Вариант № 35314

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1

2
Тип 2 № 7862
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: x в квад­ра­те минус 4, зна­ме­на­тель: 4x в квад­ра­те конец дроби умно­жить на дробь: чис­ли­тель: 2x, зна­ме­на­тель: x плюс 2 конец дроби   и най­ди­те его зна­че­ние при x=4.



3
Тип 3 № 1958
i

Най­ди­те зна­че­ние вы­ра­же­ния:  синус левая круг­лая скоб­ка арк­си­нус дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс арк­ко­си­нус левая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс арк­тан­генс ко­рень из 3 минус Пи .



4
Тип 4 № 7875
i

Раз­ло­жи­те квад­рат­ный трех­член 4x в квад­ра­те плюс 9x плюс 2 на мно­жи­те­ли.



5
Тип 5 № 3551
i

Ре­ши­те урав­не­ние 16 x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка минус 17 x в квад­ра­те плюс 1=0.



6
Тип 6 № 3108
i

Най­ди­те сумму  левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка , где (x; y) — ре­ше­ние си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний 3 в сте­пе­ни левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка плюс 81 в сте­пе­ни x = 82,3y в квад­ра­те минус x = 2, конец си­сте­мы . при­чем y < 0.



7
Тип 7 № 4193
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка ко­си­нус 2x ко­си­нус x плюс синус 2x синус x пра­вая круг­лая скоб­ка dx.



8
Тип 8 № 1954
i

Pадиус кру­го­во­го сек­то­ра равен 6, а его угол равен 30º. Сек­тор свер­нут в ко­ни­че­скую по­верх­ность. Объем по­лу­чен­но­го ко­ну­са равен



9
Тип 9 № 2618
i

Ука­жи­те си­сте­му не­ра­венств, ко­то­рая за­да­ет мно­же­ство точек, по­ка­зан­ных штри­хов­кой (1 клет­ка — 1 еди­ни­ца).



10
Тип 10 № 6950
i

Ре­ши­те урав­не­ние  ко­си­нус в квад­ра­те x плюс 4 ко­си­нус x минус 5=0 и най­ди­те его корни на x при­над­ле­жит левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка



11
Тип 11 № 3284
i

Ука­жи­те общий вид пер­во­об­раз­ной для функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2x минус 3 конец ар­гу­мен­та конец дроби при x при­над­ле­жит левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка .



12
Тип 12 № 3422
i

При каких зна­че­ни­ях пе­ре­мен­ной x зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 5 x плюс 4, зна­ме­на­тель: 2 конец дроби боль­ше или равно зна­че­нию вы­ра­же­ния  дробь: чис­ли­тель: 31 минус 5 x, зна­ме­на­тель: 3 конец дроби .



13
Тип 13 № 2622
i

Синус боль­ше­го угла тре­уголь­ни­ка со сто­ро­на­ми 10 см, 17 см, 21 см равен



14
Тип 14 № 4143
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 2 до 7, дробь: чис­ли­тель: 3, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3x минус 1 конец ар­гу­мен­та конец дроби dx.



15
Тип 15 № 2615
i

Пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной приз­мы равна 108 см2. Диа­го­наль бо­ко­вой грани на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом 45°. Най­ди­те объем дан­ной приз­мы.



16
Тип 16 № 2152
i

Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: 2x плюс 3 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 3 конец ар­гу­мен­та = 0.



17
Тип 17 № 3857
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний ко­рень из: на­ча­ло ар­гу­мен­та: 2x минус 1 конец ар­гу­мен­та мень­ше x минус 2,5x плюс 10 боль­ше или равно 0. конец си­сте­мы .



18
Тип 18 № 2164
i

Вы­чис­ли­те объем фи­гу­ры, по­лу­ча­е­мой вра­ще­ни­ем во­круг оси Ox дуги кри­вой y = ко­си­нус x, x при­над­ле­жит левая квад­рат­ная скоб­ка 0; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .



19
Тип 19 № 2165
i

Сто­ро­на ромба равна 12. Ко­си­нус од­но­го из его углов равен  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби . Пло­щадь ромба равна



20
Тип 20 № 2058
i

Cумма чле­нов бес­ко­неч­но убы­ва­ю­щей гео­мет­ри­че­ской про­грес­сии равна 9, а сумма квад­ра­тов чле­нов про­грес­сии 40,5. Най­ди­те зна­ме­на­тель дан­ной про­грес­сии.



21
Тип 21 № 7988
i

В кубе ABCDA_1B_1C_1D_1 рёбра ко­то­ро­го равны 2, вы­чис­ли­те ска­ляр­ное про­из­ве­де­ние век­то­ров \overrightarrowBD и \overrightarrowA_1C_1.



22
Тип 22 № 3446
i

Упро­сти­те вы­ра­же­ние  левая круг­лая скоб­ка дробь: чис­ли­тель: 3a в квад­ра­те , зна­ме­на­тель: 2b конец дроби пра­вая круг­лая скоб­ка в кубе умно­жить на левая круг­лая скоб­ка дробь: чис­ли­тель: 2b в квад­ра­те , зна­ме­на­тель: 3a в кубе конец дроби пра­вая круг­лая скоб­ка в квад­ра­те .



23
Тип 23 № 1971
i

Ре­ши­те урав­не­ние: 4 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 8 левая круг­лая скоб­ка 2x минус 2 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 2 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 2x минус 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка = 2 ко­рень 3 сте­пе­ни из 2 .



24
Тип 24 № 7720
i

Ре­ши­те не­ра­вен­ство  ко­рень из: на­ча­ло ар­гу­мен­та: 3 плюс 4x конец ар­гу­мен­та боль­ше ко­рень из: на­ча­ло ар­гу­мен­та: 6x минус 9 конец ар­гу­мен­та .



25
Тип 25 № 8026
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка ,x_0=2.



26
Тип 26 № 3824
i
Развернуть

Опре­де­ли­те пло­щадь ко­ри­до­ра.



27
Тип 27 № 3971
i
Развернуть

Общая пло­щадь ого­ро­да и до­ро­ги равна



28
Тип 28 № 3937
i
Развернуть

Oпре­де­ли­те объем до­бы­чи нефти в 2020 году не­дро­поль­зо­ва­те­лем НКОК «Ка­ша­ган» в млн тонн (ответ округ­ли­те до де­ся­тых)



29
Тип 29 № 3938
i
Развернуть

Ис­поль­зуя дан­ные диа­грам­мы, опре­де­ли­те, во сколь­ко раз боль­ше нефти до­бы­ва­ет­ся су­пер­ги­ган­том «Тен­гиз­шев­ройл» по срав­не­нию с «Ман­ги­ста­у­му­най­каз» (ответ за­пи­ши­те в виде обык­но­вен­ной дроби)



30
Тип 30 № 3939
i
Развернуть

Hай­ди­те раз­ни­цу гра­дус­ной меры сек­то­ра, со­от­вет­ству­ю­ще­го объ­е­му до­бы­чи нефти су­пер­ги­ган­том «Тен­гиз­шев­ройл» и гра­дус­ной меры сек­то­ра, со­от­вет­ству­ю­ще­го объ­е­му до­бы­чи нефти НКОК (Ка­ша­ган) на кру­го­вой диа­грам­ме (ответ округ­ли­те до целых).



31
Тип 31 № 7726
i

Функ­ция за­да­на урав­не­ни­ем y = 4 ко­си­нус x минус 4. Уста­но­ви­те со­от­вет­ствия:

A) Нули функ­ции

Б) Об­ласть до­пу­сти­мых зна­че­ний функ­ции

1) [−8; 0]

2)  левая фи­гур­ная скоб­ка Пи k: k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка

3)  левая фи­гур­ная скоб­ка 2 Пи k: k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка

4) [−4; 4]


Ответ:

32
Тип 32 № 7828
i

Окруж­ность впи­са­на в рав­но­бед­рен­ный тре­уголь­ник, бо­ко­вая сто­ро­на ко­то­ро­го равна 5, а ос­но­ва­ние  — 6. Уста­но­ви­те со­от­вет­ствие между пло­ща­дью тре­уголь­ни­ка, ра­ди­у­сом впи­сан­ной окруж­но­сти и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Пло­щадь тре­уголь­ни­ка

Б) Ра­ди­ус впи­сан­ной окруж­но­сти

1) 3

2) 6

3) 1,5

4) 12


Ответ:

33
Тип 33 № 7757
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  дробь: чис­ли­тель: левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка в кубе левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x в квад­ра­те плюс 2x плюс 1 конец дроби . Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x, сум­мой ко­эф­фи­ци­ен­тов мно­го­чле­на и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x

Б) Сумма ко­эф­фи­ци­ен­тов мно­го­чле­на

1) (15; 20)

2) (7; 11)

3) (20; 25)

4) (2; 5)


Ответ:

34
Тип 34 № 7778
i

Даны урав­не­ния x в квад­ра­те минус 11x плюс 24 = 0 и  левая круг­лая скоб­ка 0,25 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2 минус x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 128, зна­ме­на­тель: 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка конец дроби . Уста­но­ви­те со­от­вет­ствия:

A) Число яв­ля­ет­ся кор­нем пер­во­го урав­не­ния, но не яв­ля­ет­ся кор­нем вто­ро­го урав­не­ния

Б) Число яв­ля­ет­ся кор­нем обоих урав­не­ний

1) 2

2) 8

3) 1

4) 3


Ответ:

35
Тип 35 № 7806
i

Вто­рой член ариф­ме­ти­че­ской про­грес­сии (an) на 7,2 боль­ше ше­сто­го члена. Чет­вер­тый член про­грес­сии равен 0,7. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) d

Б) a1

1) −2,4

2) 6,1

3) −1,8

4) 7,9


Ответ:

36
Тип 36 № 2211
i

Среди на­ту­раль­ных чисел от 32 до 42 вклю­чи­тель­но вы­бе­ри­те те числа, ко­то­рые имеют боль­ше 5 де­ли­те­лей (кроме 1 и са­мо­го числа).



37
Тип 37 № 8044
i

Зна­че­ние вы­ра­же­ния 2 ко­си­нус в квад­ра­те x плюс 2 синус в квад­ра­те x левая круг­лая скоб­ка 1 плюс тан­генс в квад­ра­те x пра­вая круг­лая скоб­ка умно­жить на ко­си­нус в квад­ра­те x плюс 4 равно



38
Тип 38 № 3983
i

Tело, падая с не­ко­то­рой вы­со­ты, про­хо­дит в первую се­кун­ду 4,5 м, а каж­дую сле­ду­ю­щую — на 5,8 м боль­ше. С какой вы­со­ты упало тело, если па­де­ние про­дол­жа­лось 11 с?



39
Тип 39 № 8169
i

Пара чисел (x; y) яв­ля­ет­ся ре­ше­ни­ем си­сте­мы урав­не­ний

 си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка y минус x пра­вая круг­лая скоб­ка = 1, 3 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка умно­жить на 2 в сте­пе­ни y = 4. конец си­сте­мы .

Най­ди­те зна­че­ние вы­ра­же­ния x в квад­ра­те плюс 2y.



40
Тип 40 № 2465
i

Сто­ро­ны ос­но­ва­ния пря­мо­го па­рал­ле­ле­пи­пе­да равны 6 дм и 8 дм. Из­вест­но, что мень­шая диа­го­наль па­рал­ле­ле­пи­пе­да равна 9 дм, а одна из диа­го­на­лей ос­но­ва­ния равна 12 дм. Най­ди­те бо­ко­вое ребро и боль­шую диа­го­наль пря­мо­го па­рал­ле­ле­пи­пе­да.


Завершить работу, свериться с ответами, увидеть решения.