Вариант № 33048

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 3814
i

Упро­сти­те вы­ра­же­ние  ко­рень из: на­ча­ло ар­гу­мен­та: ко­рень из: на­ча­ло ар­гу­мен­та: 28 минус 16 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та конец ар­гу­мен­та конец ар­гу­мен­та .



2
Тип 2 № 8152
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 2x в квад­ра­те минус y, зна­ме­на­тель: x минус 4 конец дроби минус 2x плюс дробь: чис­ли­тель: 3x, зна­ме­на­тель: 4 минус x конец дроби при x  =  5, y  =  10.



3
Тип 3 № 6928
i

Най­ди­те зна­че­ние вы­ра­же­ния 5 синус дробь: чис­ли­тель: 11 Пи , зна­ме­на­тель: 12 конец дроби умно­жить на ко­си­нус дробь: чис­ли­тель: 11 Пи , зна­ме­на­тель: 12 конец дроби .



4
Тип 4 № 7878
i

При­ве­ди­те од­но­член 4a в квад­ра­те b в сте­пе­ни 6 a в сте­пе­ни 5 b в сте­пе­ни левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка к стан­дарт­но­му виду.



5
Тип 5 № 3447
i

Ре­ши­те урав­не­ние: 2 левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка =1 минус 3 x .



6
Тип 6 № 6937
i

Ре­ши­те си­сте­му урав­не­ний

 си­сте­ма вы­ра­же­ний 2x минус 3y=14,x плюс 3y= минус 11. конец си­сте­мы .

Для по­лу­чен­но­го ре­ше­ния (x0; y0) вы­чис­ли­те сумму x0 + y0.


7
Тип 7 № 4192
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка синус x ко­си­нус 2x плюс синус 2x ко­си­нус x пра­вая круг­лая скоб­ка dx.



8
Тип 8 № 3280
i

В шар ра­ди­у­сом 5 м впи­сан ци­линдр с диа­мет­ром ос­но­ва­ния 6 м. Вы­со­та ци­лин­дра равна



9
Тип 9 № 2134
i

Pешите си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: 7 минус 3x, зна­ме­на­тель: 2 минус 5x конец дроби мень­ше или равно 2, дробь: чис­ли­тель: 2x плюс 1, зна­ме­на­тель: 3x минус 3 конец дроби боль­ше 4. конец си­сте­мы .



10
Тип 10 № 6946
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния  синус 5x= дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби .



11
Тип 11 № 7903
i

Най­ди­те зна­че­ние про­из­вод­ной функ­ции x в кубе минус ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 1 конец ар­гу­мен­та в точке x  =  0.



12
Тип 12 № 2051
i

Pешите не­ра­вен­ство: 7 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка минус 4x боль­ше 3x плюс 16.



13
Тип 13 № 3571
i

По дан­ным ри­сун­ка най­ди­те зна­че­ние x.



14
Тип 14 № 4128
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от минус 2 до минус 1, левая круг­лая скоб­ка 6x в квад­ра­те плюс 2x минус 10 пра­вая круг­лая скоб­ка dx.



15
Тип 15 № 3932
i

Най­ди­те угол между плос­ко­стя­ми, если  DC = MK =3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , DM =12 см и  CK =6 см.



16
Тип 16 № 8130
i

Ре­ши­те урав­не­ние 2 в сте­пе­ни левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка минус x минус 1 пра­вая круг­лая скоб­ка =1.



17
Тип 17 № 2123
i

Pешите си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 4 в сте­пе­ни левая круг­лая скоб­ка x минус y пра­вая круг­лая скоб­ка = 16,x плюс y = 4. конец си­сте­мы .



18
Тип 18 № 4145
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной двумя пря­мы­ми: y=2x,y=x,0 мень­ше или равно x мень­ше или равно 3.



19
Тип 19 № 8013
i

В ромбе с пе­ри­мет­ром, рав­ным 40, одна из диа­го­на­лей равна 12. Най­ди­те вто­рую диа­го­наль.



20
Тип 20 № 3843
i

Учи­тель дал за­да­ние: из пред­ло­жен­ных по­сле­до­ва­тель­но­стей

а)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби ;\ldots

б)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 12 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 24 конец дроби ;\ldots

в) 10 ; 8 ; 6 ; 2 ; \ldots

вы­брать бес­ко­неч­но убы­ва­ю­щую гео­мет­ри­че­скую про­грес­сию и найти сумму всех его чле­нов. Если уче­ник вы­пол­нил за­да­ние верно, то в от­ве­те он по­лу­чил.


21
Тип 21 № 7969
i

Сто­ро­ны пра­виль­но­го тре­уголь­ни­ка ABC равны 4. Най­ди­те ска­ляр­ное про­из­ве­де­ние век­то­ров \overrightarrowAB и \overrightarrowAC.



22
Тип 22 № 8048
i

Упро­сти­те вы­ра­же­ние  ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те конец ар­гу­мен­та плюс 4, при x мень­ше 2.



23
Тип 23 № 8153
i

Ука­жи­те про­из­ве­де­ние кор­ней урав­не­ния: x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 4 x плюс 1 пра­вая круг­лая скоб­ка = 6 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 6 16 пра­вая круг­лая скоб­ка .



24
Тип 24 № 7752
i

Ре­ши­те не­ра­вен­ство 2 в сте­пе­ни x плюс 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка боль­ше или равно 144.



25
Тип 25 № 8248
i

На­пи­ши­те урав­не­ние ка­са­тель­ной в гра­фи­ку функ­ции  y = 2x в квад­ра­те минус x плюс 3 в точке  x_0 = 1.



26
Тип 26 № 3151
i
Развернуть

Сколь­ко ше­сти­знач­ных кодов для от­кры­ва­ния сейфа можно со­ста­вить из дан­ных цифр и букв?



27
Тип 27 № 8034
i
Развернуть

Опре­де­ли­те объем ре­зер­ву­а­ра B.



28
Тип 28 № 2103
i
Развернуть

Kакова ве­ро­ят­ность, что объем пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, сто­ро­ны ко­то­ро­го равны чис­лам, за­пи­сан­ным на кар­точ­ках, ко­то­рые вы­тя­нул Марат, будет крат­ным 2?



29
Тип 29 № 2104
i
Развернуть

Kакова ве­ро­ят­ность того, что Марат смо­жет по­стро­ить пря­мо­уголь­ный тре­уголь­ник, сто­ро­ны ко­то­ро­го равны чис­лам, за­пи­сан­ных на вы­бран­ных им кар­точ­ках?



30
Тип 30 № 8123
i
Развернуть

Из­вест­но, что чем боль­ше пло­щадь бо­ко­вой по­верх­но­сти и верх­ней части ре­зер­ву­а­ра, тем быст­рее про­ис­хо­дит на­грев воды в нем на солн­це. Опре­де­ли­те ре­зер­ву­ар, в ко­то­ром вода на­гре­ва­ет­ся быст­рее.



31
Тип 31 № 7728
i

Функ­ция за­да­на урав­не­ни­ем y = ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те плюс 4x минус 5 конец ар­гу­мен­та . Уста­но­ви­те со­от­вет­ствия:

A) Об­ласть опре­де­ле­ния функ­ции

Б) Нули функ­ции

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

2) {−5; 1}

3) {−1; 5}

4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 5 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка


Ответ:

32
Тип 32 № 8039
i

Даны две сферы: с цен­тром в точке O, ра­ди­у­сом R  =  6 и с цен­тром в точке P, ра­ди­у­сом r  =  2. Сферы рас­по­ло­же­ны так что центр каж­дой сферы лежит вне дру­гой сферы. Уста­но­ви­те со­от­вет­ствие между при­ве­ден­ны­ми ниже дан­ны­ми.

A) Сферы ка­са­ют­ся при

Б) Сферы пе­ре­се­ка­ют­ся при

1) OP  =  7

2) OP  =  8

3) OP  =  9

4) OP  =  10


Ответ:

33
Тип 33 № 7759
i

Най­ди­те два на­ту­раль­ных числа a и b, если из­вест­но, что от­но­ше­ние чисел a и b равно 2, а от­но­ше­ние суммы их квад­ра­тов этих чисел к их раз­но­сти равно 10.

A) Число a при­над­ле­жит про­ме­жут­ку

Б) Число b при­над­ле­жит про­ме­жут­ку

1) (6; 10)

2) (3; 5)

3) (1; 2]

4) (0; 1)


Ответ:

34
Тип 34 № 7774
i

Даны урав­не­ния 2 ко­рень из: на­ча­ло ар­гу­мен­та: x минус 1 конец ар­гу­мен­та = ко­рень из: на­ча­ло ар­гу­мен­та: 6 минус x конец ар­гу­мен­та и x в квад­ра­те минус 9x плюс 14 = 0. Уста­но­ви­те со­от­вет­ствия:

A) Число яв­ля­ет­ся кор­нем вто­ро­го урав­не­ния, но не яв­ля­ет­ся кор­нем пер­во­го урав­не­ния

Б) Число яв­ля­ет­ся кор­нем обоих урав­не­ний

1) 2

2) 1

3) 4

4) 7


Ответ:

35
Тип 35 № 7807
i

Ариф­ме­ти­че­ская про­грес­сия (an) за­да­ет­ся фор­му­лой n⁠-⁠го члена: a_n=5 минус 3,6 n. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) a6

Б) a_4 минус a_2

1) −10,8

2) −3,6

3) −7,2

4) −16,6


Ответ:

36
Тип 36 № 3940
i

Из пе­ре­чис­лен­ных ниже от­ве­тов най­ди­те те, ко­то­рые равны зна­че­нию вы­ра­же­ния  дробь: чис­ли­тель: |a плюс 2|, зна­ме­на­тель: a минус 1 конец дроби , при a  =  −5.



37
Тип 37 № 7784
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­си­нус 76 гра­ду­сов ко­си­нус 16 гра­ду­сов плюс синус 76 гра­ду­сов синус 16 гра­ду­сов .



38
Тип 38 № 2112
i

Eсли в ариф­ме­ти­че­ской про­грес­сии a_6 плюс a_9 плюс a_12 плюс a_15 = 20, то S20 равна?



39
Тип 39 № 8098
i

Ре­ши­те си­сте­му ло­га­риф­ми­че­ских урав­не­ний

 си­сте­ма вы­ра­же­ний новая стро­ка де­ся­тич­ный ло­га­рифм левая круг­лая скоб­ка x минус 2y минус 6 пра­вая круг­лая скоб­ка =0, новая стро­ка \log _2 левая круг­лая скоб­ка x минус y пра­вая круг­лая скоб­ка =1. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: x, зна­ме­на­тель: y конец дроби .



40
Тип 40 № 3340
i

В пра­виль­ной ше­сти­уголь­ной пи­ра­ми­де SABCDEF с вер­ши­ной S сто­ро­на ос­но­ва­ния равна  ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та , а бо­ко­вое ребро равно 2 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та . Най­ди­те угол между реб­ра­ми AS и SD.


Завершить работу, свериться с ответами, увидеть решения.