Вариант № 33042

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 3457
i

Упро­сти­те вы­ра­же­ние:  ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 25 конец ар­гу­мен­та умно­жить на дробь: чис­ли­тель: ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: минус 64 конец ар­гу­мен­та конец дроби умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та .



2
Тип 2 № 7862
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: x в квад­ра­те минус 4, зна­ме­на­тель: 4x в квад­ра­те конец дроби умно­жить на дробь: чис­ли­тель: 2x, зна­ме­на­тель: x плюс 2 конец дроби   и най­ди­те его зна­че­ние при x=4.



3
Тип 3 № 1958
i

Най­ди­те зна­че­ние вы­ра­же­ния:  синус левая круг­лая скоб­ка арк­си­нус дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс арк­ко­си­нус левая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс арк­тан­генс ко­рень из 3 минус Пи .



4
Тип 4 № 7874
i

Раз­ло­жи­те квад­рат­ный трех­член 2x в квад­ра­те плюс 8x плюс 6 на мно­жи­те­ли.



5
Тип 5 № 3551
i

Ре­ши­те урав­не­ние 16 x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка минус 17 x в квад­ра­те плюс 1=0.



6
Тип 6 № 1961
i

Най­ди­те (x − y), если пара чисел (x; y) яв­ля­ет­ся ре­ше­ни­ем си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний x в квад­ра­те y = 25,xy в квад­ра­те = 5. конец си­сте­мы .



7
Тип 7 № 4186
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка синус левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка плюс ко­си­нус левая круг­лая скоб­ка x минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx.



8
Тип 8 № 1954
i

Pадиус кру­го­во­го сек­то­ра равен 6, а его угол равен 30º. Сек­тор свер­нут в ко­ни­че­скую по­верх­ность. Объем по­лу­чен­но­го ко­ну­са равен



9
Тип 9 № 7895
i

Наи­мень­шее на­ту­раль­ное ре­ше­ние си­сте­мы не­ра­венств  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: 3, зна­ме­на­тель: x плюс 4 конец дроби боль­ше или равно дробь: чис­ли­тель: 2, зна­ме­на­тель: x плюс 1 конец дроби , дробь: чис­ли­тель: 5, зна­ме­на­тель: x конец дроби боль­ше дробь: чис­ли­тель: 1, зна­ме­на­тель: x минус 5 конец дроби конец си­сте­мы . равно



10
Тип 10 № 3913
i

Най­ди­те ко­рень урав­не­ния  синус 3 x плюс ко­си­нус 3 x= ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , ко­то­рый при­над­ле­жит чис­ло­во­му ин­тер­ва­лу (90°; 180°).



11
Тип 11 № 4205
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =4 левая круг­лая скоб­ка 3x плюс 2 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та , про­хо­дя­щую через точку  левая круг­лая скоб­ка 1;5 пра­вая круг­лая скоб­ка .



12
Тип 12 № 3422
i

При каких зна­че­ни­ях пе­ре­мен­ной x зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 5 x плюс 4, зна­ме­на­тель: 2 конец дроби боль­ше или равно зна­че­нию вы­ра­же­ния  дробь: чис­ли­тель: 31 минус 5 x, зна­ме­на­тель: 3 конец дроби .



13
Тип 13 № 1969
i

Cумма двух сто­рон тре­уголь­ни­ка равна 18 см, а тре­тью сто­ро­ну его бис­сек­три­са делит на от­рез­ки 4 см и 5 см. Наи­мень­шая сто­ро­на тре­уголь­ни­ка равна



14
Тип 14 № 4143
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 2 до 7, дробь: чис­ли­тель: 3, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3x минус 1 конец ар­гу­мен­та конец дроби dx.



15
Тип 15 № 2615
i

Пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной приз­мы равна 108 см2. Диа­го­наль бо­ко­вой грани на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом 45°. Най­ди­те объем дан­ной приз­мы.



16
Тип 16 № 2152
i

Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: 2x плюс 3 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 3 конец ар­гу­мен­та = 0.



17
Тип 17 № 3857
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний ко­рень из: на­ча­ло ар­гу­мен­та: 2x минус 1 конец ар­гу­мен­та мень­ше x минус 2,5x плюс 10 боль­ше или равно 0. конец си­сте­мы .



18
Тип 18 № 2164
i

Вы­чис­ли­те объем фи­гу­ры, по­лу­ча­е­мой вра­ще­ни­ем во­круг оси Ox дуги кри­вой y = ко­си­нус x, x при­над­ле­жит левая квад­рат­ная скоб­ка 0; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .



19
Тип 19 № 2165
i

Сто­ро­на ромба равна 12. Ко­си­нус од­но­го из его углов равен  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби . Пло­щадь ромба равна



20
Тип 20 № 2058
i

Cумма чле­нов бес­ко­неч­но убы­ва­ю­щей гео­мет­ри­че­ской про­грес­сии равна 9, а сумма квад­ра­тов чле­нов про­грес­сии 40,5. Най­ди­те зна­ме­на­тель дан­ной про­грес­сии.



21
Тип 21 № 7935
i

На ри­сун­ке изоб­ра­жен пря­мо­уголь­ник ABCD. Най­ди­те длины век­то­ров: \overrightarrowAO плюс \overrightarrowBO, \overrightarrowAO минус \overrightarrowBO, \overrightarrowAD минус \overrightarrowAB, если AB  =  12, BC  =  5.



22
Тип 22 № 3769
i

Зна­че­ние суммы  дробь: чис­ли­тель: b плюс c, зна­ме­на­тель: 3a конец дроби плюс дробь: чис­ли­тель: b минус 2c, зна­ме­на­тель: a конец дроби равно



23
Тип 23 № 6966
i

Пусть x0  — наи­боль­ший ко­рень урав­не­ния \log в квад­ра­те _2 левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 32 конец дроби пра­вая круг­лая скоб­ка плюс 4 ло­га­рифм по ос­но­ва­нию 2 x минус 52=0, тогда зна­че­ние вы­ра­же­ния 7 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x_0 конец ар­гу­мен­та равно ...



24
Тип 24 № 7746
i

Ре­ши­те про­стей­шее три­го­но­мет­ри­че­ское не­ра­вен­ство 	\ левая квад­рат­ная скоб­ка 2 синус x боль­ше или равно минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .



25
Тип 25 № 8029
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­си­нус x,x_0= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби .



26
Тип 26 № 3824
i
Развернуть

Опре­де­ли­те пло­щадь ко­ри­до­ра.



27
Тип 27 № 3152
i
Развернуть

Сколь­ко ше­сти­знач­ных кодов для от­кры­ва­ния сейфа можно со­ста­вить из дан­ных цифр так, чтобы буква M была пер­вой?



28
Тип 28 № 3937
i
Развернуть

Oпре­де­ли­те объем до­бы­чи нефти в 2020 году не­дро­поль­зо­ва­те­лем НКОК «Ка­ша­ган» в млн тонн (ответ округ­ли­те до де­ся­тых)



29
Тип 29 № 3938
i
Развернуть

Ис­поль­зуя дан­ные диа­грам­мы, опре­де­ли­те, во сколь­ко раз боль­ше нефти до­бы­ва­ет­ся су­пер­ги­ган­том «Тен­гиз­шев­ройл» по срав­не­нию с «Ман­ги­ста­у­му­най­каз» (ответ за­пи­ши­те в виде обык­но­вен­ной дроби)



30
Тип 30 № 3939
i
Развернуть

Hай­ди­те раз­ни­цу гра­дус­ной меры сек­то­ра, со­от­вет­ству­ю­ще­го объ­е­му до­бы­чи нефти су­пер­ги­ган­том «Тен­гиз­шев­ройл» и гра­дус­ной меры сек­то­ра, со­от­вет­ству­ю­ще­го объ­е­му до­бы­чи нефти НКОК (Ка­ша­ган) на кру­го­вой диа­грам­ме (ответ округ­ли­те до целых).



31
Тип 31 № 7726
i

Функ­ция за­да­на урав­не­ни­ем y = 4 ко­си­нус x минус 4. Уста­но­ви­те со­от­вет­ствия:

A) Нули функ­ции

Б) Об­ласть до­пу­сти­мых зна­че­ний функ­ции

1) [−8; 0]

2)  левая фи­гур­ная скоб­ка Пи k: k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка

3)  левая фи­гур­ная скоб­ка 2 Пи k: k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка

4) [−4; 4]


Ответ:

32
Тип 32 № 7828
i

Окруж­ность впи­са­на в рав­но­бед­рен­ный тре­уголь­ник, бо­ко­вая сто­ро­на ко­то­ро­го равна 5, а ос­но­ва­ние  — 6. Уста­но­ви­те со­от­вет­ствие между пло­ща­дью тре­уголь­ни­ка, ра­ди­у­сом впи­сан­ной окруж­но­сти и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Пло­щадь тре­уголь­ни­ка

Б) Ра­ди­ус впи­сан­ной окруж­но­сти

1) 3

2) 6

3) 1,5

4) 12


Ответ:

33
Тип 33 № 7757
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  дробь: чис­ли­тель: левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка в кубе левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x в квад­ра­те плюс 2x плюс 1 конец дроби . Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x, сум­мой ко­эф­фи­ци­ен­тов мно­го­чле­на и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x

Б) Сумма ко­эф­фи­ци­ен­тов мно­го­чле­на

1) (15; 20)

2) (7; 11)

3) (20; 25)

4) (2; 5)


Ответ:

34
Тип 34 № 7778
i

Даны урав­не­ния x в квад­ра­те минус 11x плюс 24 = 0 и  левая круг­лая скоб­ка 0,25 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2 минус x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 128, зна­ме­на­тель: 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка конец дроби . Уста­но­ви­те со­от­вет­ствия:

A) Число яв­ля­ет­ся кор­нем пер­во­го урав­не­ния, но не яв­ля­ет­ся кор­нем вто­ро­го урав­не­ния

Б) Число яв­ля­ет­ся кор­нем обоих урав­не­ний

1) 2

2) 8

3) 1

4) 3


Ответ:

35
Тип 35 № 7810
i

В ариф­ме­ти­че­ской про­грес­сии (an) из­вест­но, что a_2=1 и a_4=9. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) d

Б) S20

1) 700

2) 2

3) 4

4) 350


Ответ:

36
Тип 36 № 2211
i

Среди на­ту­раль­ных чисел от 32 до 42 вклю­чи­тель­но вы­бе­ри­те те числа, ко­то­рые имеют боль­ше 5 де­ли­те­лей (кроме 1 и са­мо­го числа).



37
Тип 37 № 8044
i

Зна­че­ние вы­ра­же­ния 2 ко­си­нус в квад­ра­те x плюс 2 синус в квад­ра­те x левая круг­лая скоб­ка 1 плюс тан­генс в квад­ра­те x пра­вая круг­лая скоб­ка умно­жить на ко­си­нус в квад­ра­те x плюс 4 равно



38
Тип 38 № 3983
i

Tело, падая с не­ко­то­рой вы­со­ты, про­хо­дит в первую се­кун­ду 4,5 м, а каж­дую сле­ду­ю­щую — на 5,8 м боль­ше. С какой вы­со­ты упало тело, если па­де­ние про­дол­жа­лось 11 с?



39
Тип 39 № 8112
i

Ре­ши­те си­сте­му ра­ци­о­наль­ных урав­не­ний

 си­сте­ма вы­ра­же­ний новая стро­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: x минус y конец дроби минус дробь: чис­ли­тель: 1, зна­ме­на­тель: x плюс y конец дроби =1, новая стро­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: x плюс y конец дроби минус дробь: чис­ли­тель: 1, зна­ме­на­тель: x минус y конец дроби =4. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния 2x плюс 3y.



40
Тип 40 № 2465
i

Сто­ро­ны ос­но­ва­ния пря­мо­го па­рал­ле­ле­пи­пе­да равны 6 дм и 8 дм. Из­вест­но, что мень­шая диа­го­наль па­рал­ле­ле­пи­пе­да равна 9 дм, а одна из диа­го­на­лей ос­но­ва­ния равна 12 дм. Най­ди­те бо­ко­вое ребро и боль­шую диа­го­наль пря­мо­го па­рал­ле­ле­пи­пе­да.


Завершить работу, свериться с ответами, увидеть решения.