Вариант № 28928

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 7854
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: минус 7 конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 32 конец ар­гу­мен­та умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 49 конец ар­гу­мен­та минус 7 дробь: чис­ли­тель: ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 64 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: минус 2 конец ар­гу­мен­та конец дроби .



2
Тип 2 № 7861
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: 2c минус 4, зна­ме­на­тель: cd минус 2d конец дроби   и най­ди­те его зна­че­ние при c=0,5; d=5.



3
Тип 3 № 6928
i

Най­ди­те зна­че­ние вы­ра­же­ния 5 синус дробь: чис­ли­тель: 11 Пи , зна­ме­на­тель: 12 конец дроби умно­жить на ко­си­нус дробь: чис­ли­тель: 11 Пи , зна­ме­на­тель: 12 конец дроби .



4
Тип 4 № 7874
i

Раз­ло­жи­те квад­рат­ный трех­член 2x в квад­ра­те плюс 8x плюс 6 на мно­жи­те­ли.



5
Тип 5 № 3805
i

Ре­ши­те урав­не­ние  дробь: чис­ли­тель: 2x в квад­ра­те , зна­ме­на­тель: x минус 2 конец дроби = дробь: чис­ли­тель: 6 минус 7x, зна­ме­на­тель: 2 минус x конец дроби .



6
Тип 6 № 1941
i

Най­ди­те число А, если A = x умно­жить на y, где (x; y) яв­ля­ет­ся ре­ше­ни­ем си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний x в квад­ра­те y = 9,xy в квад­ра­те = 3. конец си­сте­мы .



7
Тип 7 № 4181
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 4x минус 2 пра­вая круг­лая скоб­ка минус 2 в сте­пе­ни левая круг­лая скоб­ка 3x минус 4 пра­вая круг­лая скоб­ка минус 5 в сте­пе­ни левая круг­лая скоб­ка 1 минус 5x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx.



8
Тип 8 № 3455
i

Ра­ди­ус верх­не­го ос­но­ва­ния усечённого ко­ну­са равен 2 м, вы­со­та — 6 м. Най­ди­те ра­ди­ус ниж­не­го ос­но­ва­ния, если его объём равен 38π м3.



9
Тип 9 № 2059
i

Pешите си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 8 пра­вая круг­лая скоб­ка боль­ше 0,x в квад­ра­те минус 6x плюс 8 боль­ше или равно 0. конец си­сте­мы .



10
Тип 10 № 6951
i

Ре­ши­те урав­не­ние:  синус x ко­си­нус x= дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .



11
Тип 11 № 7897
i

Из ниже пе­ре­чис­лен­ных от­ве­тов, ука­жи­те одну из пер­во­об­раз­ных для функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 4, зна­ме­на­тель: x конец дроби , при x боль­ше 0.



12
Тип 12 № 8142
i

Ре­ши­те не­ра­вен­ство:  дробь: чис­ли­тель: 8, зна­ме­на­тель: 4x минус 2 конец дроби мень­ше 0.



13
Тип 13 № 2724
i

Най­ди­те пло­щадь за­штри­хо­ван­ной фи­гу­ры (см. рис).



14
Тип 14 № 3695
i

Вы­чис­ли­те  при­над­ле­жит t_0 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка ко­си­нус левая круг­лая скоб­ка 2 x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка d x.



15
Тип 15 № 3566
i

Из точки к плос­ко­сти про­ве­де­ны пер­пен­ди­ку­ляр и на­клон­на под углом 30° к ее про­ек­ции. Най­ди­те длину на­клон­ной, если длина пер­пен­ди­ку­ля­ра 12 см.



16
Тип 16 № 8128
i

Ре­ши­те урав­не­ние  левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 16, зна­ме­на­тель: 45 конец дроби .



17
Тип 17 № 3343
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний x минус y=2 Пи , синус x плюс ко­си­нус y=1 . конец си­сте­мы .



18
Тип 18 № 4145
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной двумя пря­мы­ми: y=2x,y=x,0 мень­ше или равно x мень­ше или равно 3.



19
Тип 19 № 3314
i

Пря­мо­уголь­ник ABCD впи­сан в окруж­ность. Дуга BC равна 40°. Мень­ший угол между диа­го­на­ля­ми пря­мо­уголь­ни­ка равен?



20
Тип 20 № 2093
i

Cумма семи пер­вых чле­нов гео­мет­ри­че­ской про­грес­сии 48; 24; ... равна?



21
Тип 21 № 7949
i

Най­ди­те длины сумм и раз­но­стей век­то­ров по дан­ным ри­сун­ка.



22
Тип 22 № 2091
i

Упро­сти­те вы­ра­же­ние:  левая круг­лая скоб­ка x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 12 конец дроби пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 1,2 пра­вая круг­лая скоб­ка : левая круг­лая скоб­ка x в сте­пе­ни левая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1,5 пра­вая круг­лая скоб­ка .



23
Тип 23 № 1991
i

Ре­ши­те урав­не­ние:  ко­рень из: на­ча­ло ар­гу­мен­та: 2 минус ло­га­рифм по ос­но­ва­нию 2 x конец ар­гу­мен­та = ло­га­рифм по ос­но­ва­нию 2 x.



24
Тип 24 № 3653
i

Ре­ши­те не­ра­вен­ство: 2 синус x минус 1 боль­ше 0.



25
Тип 25 № 8019
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =4 минус 2x минус x в квад­ра­те ,x_0=4.



26
Тип 26 № 2031
i
Развернуть

Чему равна пло­щадь од­но­го кро­вель­но­го листа?



27
Тип 27 № 3860
i
Развернуть

Длина ребра куба равна



28
Тип 28 № 3363
i
Развернуть

Сколь­ки­ми спо­со­ба­ми может вы­пасть в сумме число 5?



29
Тип 29 № 2559
i
Развернуть

Най­ди­те сред­нюю массу клуб­ня кар­то­фе­ля.



30
Тип 30 № 3863
i
Развернуть

Для из­го­тов­ле­ния де­та­ли в форме шара со­ставь­те его урав­не­ние.



31
Тип 31 № 7715
i

Функ­ция за­да­на урав­не­ни­ем y = ко­си­нус x минус 4. Уста­но­ви­те со­от­вет­ствие между наи­боль­шим и наи­мень­шим зна­че­ни­я­ми функ­ции и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Наи­боль­шее зна­че­ние функ­ции

Б) Наи­мень­шее зна­че­ние функ­ции

1) −3

2) −5

3) −1

4) 3


Ответ:

32
Тип 32 № 7832
i

Впи­сан­ная окруж­ность раз­де­ли­ла ги­по­те­ну­зу тре­уголь­ни­ка на от­рез­ки 4 и 6. Уста­но­ви­те со­от­вет­ствие между дли­на­ми ка­те­тов тре­уголь­ни­ка и чис­ло­вы­ми про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их зна­че­ния.

A) Боль­ший катет тре­уголь­ни­ка

Б) Мень­ший катет тре­уголь­ни­ка

1) (3; 5)

2) (7; 9)

3) (6; 7)

4) [5; 6]


Ответ:

33
Тип 33 № 7730
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка в кубе . Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x, сум­мой ко­эф­фи­ци­ен­тов мно­го­чле­на и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x

Б) Сумма ко­эф­фи­ци­ен­тов мно­го­чле­на

1) [2; 3)

2) (1; 3)

3) (7; 8]

4) [3; 4)


Ответ:

34
Тип 34 № 7781
i

Даны урав­не­ния  левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 5x минус 3 пра­вая круг­лая скоб­ка и  левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та в квад­ра­те минус 2x минус 3=0. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) 1, 3, −3

2) 0, −3, 4

3) 2, 3, 7

4) −1, 2, 3


Ответ:

35
Тип 35 № 7812
i

У гео­мет­ри­че­ской про­грес­сии  левая круг­лая скоб­ка b_n пра­вая круг­лая скоб­ка из­вест­но, что  b_1=2, q= минус 2. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) b5

Б) S5

1) 32

2) 16

3) 11

4) 22


Ответ:

36
Тип 36 № 3229
i

Oдно из двух на­ту­раль­ных чисел боль­ше дру­го­го на 13. Най­ди­те эти числа, если их про­из­ве­де­ние равно 48.



37
Тип 37 № 7799
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 24, зна­ме­на­тель: Пи конец дроби умно­жить на арк­ко­си­нус левая круг­лая скоб­ка минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка .



38
Тип 38 № 3835
i

Дана по­сле­до­ва­тель­ность на­ту­раль­ных чисел, мень­ших 170, да­ю­щих оста­ток 1 при де­ле­нии на 19. Вы­бе­ри­те вер­ные утвер­жде­ния.



39
Тип 39 № 8108
i

Ре­ши­те си­сте­му, при­во­ди­мую к со­дер­жа­щей од­но­род­ное урав­не­ние

 си­сте­ма вы­ра­же­ний новая стро­ка x в квад­ра­те плюс 3xy=18, новая стро­ка 3y в квад­ра­те плюс xy=6. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния x_1y_1 минус x_2y_2.



40
Тип 40 № 2640
i

В пра­виль­ной тре­уголь­ной приз­ме все ребра равны 1. Точка K — се­ре­ди­на ребра AC. Най­ди­те ко­ор­ди­на­ты век­то­ров \overrightarrowAK и  \overrightarrowFB.


Завершить работу, свериться с ответами, увидеть решения.