Вариант № 28927

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 2097
i

Вы­чис­ли­те:  левая круг­лая скоб­ка 2 ко­рень из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та плюс 3 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та минус 7 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та плюс 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та пра­вая круг­лая скоб­ка .



2

3
Тип 3 № 3638
i

Опре­де­ли­те чис­ло­вое зна­че­ние вы­ра­же­ния  синус 150 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка умно­жить на ко­си­нус 210 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка умно­жить на тан­генс 135 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка .



4
Тип 4 № 7881
i

При­ве­ди­те од­но­член a в квад­ра­те b в сте­пе­ни 7 a в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка b в сте­пе­ни 5 к стан­дарт­но­му виду.



5
Тип 5 № 2117
i

Ука­жи­те урав­не­ние, не яв­ля­ю­ще­е­ся ли­ней­ным урав­не­ни­ем с двумя пе­ре­мен­ны­ми.



6
Тип 6 № 2188
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 5x минус 2y = 15, минус 2x плюс y = минус 7. конец си­сте­мы .



7
Тип 7 № 4188
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка 2 ко­си­нус 2x минус 3 синус 3x пра­вая круг­лая скоб­ка dx.



8
Тип 8 № 4103
i

Вы­со­та ци­лин­дра в 3 раза боль­ше ра­ди­у­са его ос­но­ва­ния. Най­ди­те объем ци­лин­дра, если ра­ди­ус ос­но­ва­ния равен  ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та .



9
Тип 9 № 3429
i

Pешите си­сте­му не­ра­венств

 си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x в квад­ра­те минус 2 x плюс 1 конец дроби боль­ше или равно 0, дробь: чис­ли­тель: x в квад­ра­те минус 2 x минус 3, зна­ме­на­тель: левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те конец дроби мень­ше или равно 0. конец си­сте­мы .



10
Тип 10 № 1945
i

Ре­ши­те урав­не­ние  синус в квад­ра­те x минус 17 синус x плюс 16 = 0 и най­ди­те его корни на x при­над­ле­жит левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .



11
Тип 11 № 4196
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =3x в кубе плюс 2x минус 1, про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 2;3 пра­вая круг­лая скоб­ка .



12
Тип 12 № 2121
i

Oпре­де­ли­те длину про­ме­жут­ка, со­от­вет­ству­ю­ще­го ре­ше­нию не­ра­вен­ства:  дробь: чис­ли­тель: левая круг­лая скоб­ка x в кубе минус 64 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в кубе плюс 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: минус 1 минус x в квад­ра­те конец дроби боль­ше или равно 0.



13
Тип 13 № 3285
i

Най­ди­те угол В тре­уголь­ни­ка АВС, если А(1; 1), В(4; 1) и С(4; 5).



14
Тип 14 № 2718
i

Вы­чис­ли­те ин­те­грал:  ин­те­грал пре­де­лы: от минус 5 до 1, левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те dx .



15
Тип 15 № 2030
i

Дву­гран­ный угол равен 60°. Из точки N на его ребре в гра­нях про­ве­де­ны пер­пен­ди­ку­ляр­ные ребру от­рез­ки NB = 8 см, AN = 2 см. Най­ди­те длину AB.



16
Тип 16 № 1951
i

Ре­ши­те урав­не­ние 2 в сте­пе­ни левая круг­лая скоб­ка 4x пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка 3x пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 4 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка минус 1.



17
Тип 17 № 2029
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 5 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те минус 9 пра­вая круг­лая скоб­ка боль­ше или равно 625 в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка , дробь: чис­ли­тель: 4x плюс 5, зна­ме­на­тель: 7 конец дроби минус дробь: чис­ли­тель: 3x плюс 2, зна­ме­на­тель: 4 конец дроби мень­ше или равно дробь: чис­ли­тель: 7 минус 2x, зна­ме­на­тель: 8 конец дроби . конец си­сте­мы .



18
Тип 18 № 4150
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=x в квад­ра­те плюс 2x,y=x плюс 2.



19
Тип 19 № 7909
i

В тра­пе­ции углы при ос­но­ва­нии равны 18 гра­ду­сов и 104 гра­ду­сов . Найти наи­боль­ший угол тра­пе­ции.



20
Тип 20 № 3567
i

Най­ди­те пер­вый по­ло­жи­тель­ный член ариф­ме­ти­че­ской про­грес­сии: −20,3; −18,7; ...



21
Тип 21 № 7933
i

Най­ди­те x и y, если из­вест­но, что век­то­ры \vecc = левая круг­лая скоб­ка минус 2; y; минус 1 пра­вая круг­лая скоб­ка и \vecd = левая круг­лая скоб­ка 4; 5; x пра­вая круг­лая скоб­ка кол­ли­не­ар­ны. Вы­бе­ри­те про­ме­жут­ки, в ко­то­рые вхо­дят со­от­вет­ству­ю­щие зна­че­ния x и y од­но­вре­мен­но.



22
Тип 22 № 2116
i

Из­бавь­тесь от ир­ра­ци­о­наль­но­сти в зна­ме­на­те­ле:  дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: x минус y конец ар­гу­мен­та конец дроби .



23

Сумма кор­ней (или ко­рень, если он один) урав­не­ния 2 умно­жить на 6 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 7 x пра­вая круг­лая скоб­ка =108 минус x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 7 6 пра­вая круг­лая скоб­ка равна ...



24
Тип 24 № 7719
i

Ре­ши­те не­ра­вен­ство  ко­рень из: на­ча­ло ар­гу­мен­та: 2x минус 3 конец ар­гу­мен­та боль­ше или равно ко­рень из: на­ча­ло ар­гу­мен­та: 4x минус 1 конец ар­гу­мен­та .



25
Тип 25 № 8017
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x в кубе минус x в квад­ра­те плюс x,x_0= минус 1.



26
Тип 26 № 3970
i
Развернуть

Пло­щадь до­ро­ги равна



27
Тип 27 № 2242
i
Развернуть

Опре­де­ли­те длину по­лу­чен­но­го век­то­ра.



28
Тип 28 № 3861
i
Развернуть

Опре­де­ли­те ко­ор­ди­на­ты точки C.



29
Тип 29 № 3364
i
Развернуть

Сколь­ки­ми спо­со­ба­ми может вы­пасть в сумме чет­ное число?



30
Тип 30 № 2245
i
Развернуть

Опре­де­ли­те угол между век­то­ра­ми  \overrightarrowEB и  \overrightarrowEA.



31
Тип 31 № 8161
i

Квад­ра­тич­ная функ­ция за­да­на в виде y = левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те минус 4. Уста­но­ви­те со­от­вет­ствия:

A) Нули функ­ции

Б) Ко­ор­ди­на­ты вер­ши­ны па­ра­бо­лы

1) {0; 4}

2) (−2; 4)

3) {1; 2}

4) (2; −4)


Ответ:

32
Тип 32 № 7839
i

Ци­линдр, осе­вым се­че­ни­ем ко­то­ро­го яв­ля­ет­ся квад­рат, впи­сан в шар, ра­ди­ус ко­то­ро­го равен 4. Уста­но­ви­те со­от­вет­ствие между вы­со­той ци­лин­дра, его объ­е­мом и чис­ло­вы­ми про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их зна­че­ния.

A) Вы­со­та ци­лин­дра

Б) Объем ци­лин­дра

1) [176; 188)

2) (3; 5)

3) (5; 6)

4) (158; 161]


Ответ:

33
Тип 33 № 7762
i

Най­ди­те два на­ту­раль­ных числа x и y, x > y, если из­вест­но, что сумма чисел x и y равна 7, а про­из­ве­де­ние этих чисел равно 12.

A) Число x при­над­ле­жит про­ме­жут­ку

Б) Число y при­над­ле­жит про­ме­жут­ку

1) [4; 5]

2) (1; 3]

3) (5; 6]

4) (0; 2)


Ответ:

34
Тип 34 № 7770
i

Даны урав­не­ния x в квад­ра­те плюс 8x минус 9 = 0 и 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка = 32. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) −9, 3, 1

2) −1, 0, 2

3) −9, 4, 1

4) 7, 8, 9


Ответ:

35
Тип 35 № 7819
i

Вы­пи­са­но не­сколь­ко пер­вых чле­нов гео­мет­ри­че­ской про­грес­сии: −1024; −256; −64; … Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) b5

Б) S5

1) 4

2) −4

3) −1362

4) −1364


Ответ:

36
Тип 36 № 3759
i

Ука­жи­те вы­ра­же­ния, зна­че­ния ко­то­рых чис­лен­но равны  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .



37
Тип 37 № 7776
i

Зна­че­ние вы­ра­же­ния  синус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс альфа пра­вая круг­лая скоб­ка минус ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби минус альфа пра­вая круг­лая скоб­ка равно



38
Тип 38 № 8168
i

Сумма трех чисел, со­став­ля­ю­щих ариф­ме­ти­че­скую про­грес­сию, у ко­то­рой раз­ность боль­ше нуля, равна 12. Если к этим чис­лам при­ба­вить со­от­вет­ствен­но 2, 5 и 20, то по­лу­чен­ные числа со­став­ля­ют пер­вые три члена гео­мет­ри­че­ской про­грес­сии. Най­ди­те эти три числа.



39
Тип 39 № 2423
i

Най­ди­те от­но­ше­ние  дробь: чис­ли­тель: x, зна­ме­на­тель: y конец дроби , где (x; y) — ре­ше­ние си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний 3 в сте­пе­ни x умно­жить на 3 в сте­пе­ни y = 27,10 в сте­пе­ни левая круг­лая скоб­ка \lg левая круг­лая скоб­ка x минус y пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка =5. конец си­сте­мы .



40
Тип 40 № 3926
i

Из точки M к плос­ко­сти α про­ве­де­ны две на­клон­ные, длина ко­то­рых 18 см и 2 ко­рень из: на­ча­ло ар­гу­мен­та: 109 конец ар­гу­мен­та  см. Их про­ек­ции на эту плос­кость от­но­сят­ся как 3 : 4. Най­ди­те рас­сто­я­ние от точки M до плос­ко­сти α и длины их про­ек­ций.


Завершить работу, свериться с ответами, увидеть решения.