Вариант № 28926

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 2120
i

Hай­ди­те сумму: 1 плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 конец дроби плюс ...



2
Тип 2 № 7859
i

Най­ди­те зна­че­ние вы­ра­же­ния 28ab плюс левая круг­лая скоб­ка 2a минус 7b пра­вая круг­лая скоб­ка в квад­ра­те при a= ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та ,b= ко­рень из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та .



3
Тип 3 № 6933
i

Най­ди­те зна­че­ние вы­ра­же­ния 24 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ко­си­нус левая круг­лая скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка синус левая круг­лая скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка .



4
Тип 4 № 1959
i

Дан­ное вы­ра­же­ние  минус левая круг­лая скоб­ка 3,5x минус y пра­вая круг­лая скоб­ка плюс 3 левая круг­лая скоб­ка минус 2y плюс 0,5x пра­вая круг­лая скоб­ка имеет стан­дарт­ный вид



5
Тип 5 № 3344
i

Чис­ли­тель дроби на 4 мень­ше ее зна­ме­на­те­ля. Если эту дробь сло­жить с об­рат­ной ей дро­бью, то по­лу­чит­ся число  дробь: чис­ли­тель: 106, зна­ме­на­тель: 45 конец дроби . Най­ди­те ис­ход­ную дробь.



6
Тип 6 № 3417
i

Если пары (x1; y1) и (x2; y2) — ре­ше­ния си­сте­мы урав­не­ний

 си­сте­ма вы­ра­же­ний 2 x в квад­ра­те минус y=0, y плюс 3=5 x, конец си­сте­мы .

то най­ди­те m, где m= левая круг­лая скоб­ка y_1 минус x_1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка y_2 минус x_2 пра­вая круг­лая скоб­ка .



7
Тип 7 № 4172
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс x в кубе плюс x минус 3, зна­ме­на­тель: x в квад­ра­те плюс 1 конец дроби dx.



8
Тип 8 № 8185
i

Об­ра­зу­ю­щая ко­ну­са равна 6 и со­став­ля­ет с плос­ко­стью ос­но­ва­ния угол 30°. Най­ди­те пло­щадь ос­но­ва­ния ко­ну­са.



9
Тип 9 № 2163
i

Най­ди­те целые ре­ше­ния си­сте­мы не­ра­венств:  си­сте­ма вы­ра­же­ний 2 левая круг­лая скоб­ка 3x плюс 2 пра­вая круг­лая скоб­ка боль­ше 5 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка ,7 левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка мень­ше 3 левая круг­лая скоб­ка 2x плюс 3 пра­вая круг­лая скоб­ка . конец си­сте­мы .



10
Тип 10 № 6949
i

Ре­ши­те урав­не­ние  ко­си­нус левая круг­лая скоб­ка 3x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .



11
Тип 11 № 4194
i

Най­ди­те пер­во­об­раз­ную функ­ции \ левая квад­рат­ная скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка 2x в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка минус 3x в квад­ра­те пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 1;5 пра­вая круг­лая скоб­ка .



12
Тип 12 № 3380
i

Ре­ши­те не­ра­вен­ство:  дробь: чис­ли­тель: 3x плюс 9, зна­ме­на­тель: 3 минус x конец дроби боль­ше или равно 0.



13
Тип 13 № 1943
i

В тре­уголь­ни­ке ACB AC  =  6, MN  =  4, AB  =  4,8, MN || AB. Най­ди­те MC.



14
Тип 14 № 7916
i

Вы­чис­ли­те ин­те­грал  ин­те­грал пре­де­лы: от 0 до \tfrac Пи , 6 левая круг­лая скоб­ка синус 5x ко­си­нус 4x минус ко­си­нус 5x синус 4x пра­вая круг­лая скоб­ка dx



15
Тип 15 № 2720
i

Най­ди­те объём куба, если пло­щадь его пол­ной по­верх­но­сти равна 72 см2.



16
Тип 16 № 6959
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те плюс 3x конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: 1 минус x конец ар­гу­мен­та = ко­рень из: на­ча­ло ар­гу­мен­та: 12 минус x конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: 1 минус x конец ар­гу­мен­та .



17
Тип 17 № 2239
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: x плюс 1, зна­ме­на­тель: ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка конец дроби боль­ше 0, ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 11 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те плюс 7 пра­вая круг­лая скоб­ка мень­ше ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 11 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 6x минус 1 пра­вая круг­лая скоб­ка . конец си­сте­мы .



18
Тип 18 № 8005
i

Пло­щадь фи­гу­ры, огра­ни­чен­ной гра­фи­ка­ми функ­ций y=x в квад­ра­те минус 1 и y=x плюс 1 равна



19
Тип 19 № 7914
i

Пра­виль­ный n-уголь­ник впи­сан в окруж­ность. Её ра­ди­ус со­став­ля­ет с одной из сто­рон n-уголь­ни­ка угол 54°. Най­ди­те n.



20
Тип 20 № 2437
i

Вы­чис­ли­те сумму бес­ко­неч­но убы­ва­ю­щей гео­мет­ри­че­ской про­грес­сии: 0,6; 0,06; 0,006,...



21
Тип 21 № 7988
i

В кубе ABCDA_1B_1C_1D_1 рёбра ко­то­ро­го равны 2, вы­чис­ли­те ска­ляр­ное про­из­ве­де­ние век­то­ров \overrightarrowBD и \overrightarrowA_1C_1.



22
Тип 22 № 3446
i

Упро­сти­те вы­ра­же­ние  левая круг­лая скоб­ка дробь: чис­ли­тель: 3a в квад­ра­те , зна­ме­на­тель: 2b конец дроби пра­вая круг­лая скоб­ка в кубе умно­жить на левая круг­лая скоб­ка дробь: чис­ли­тель: 2b в квад­ра­те , зна­ме­на­тель: 3a в кубе конец дроби пра­вая круг­лая скоб­ка в квад­ра­те .



23

Сумма кор­ней (или ко­рень, если он один) урав­не­ния 2 умно­жить на 6 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 7 x пра­вая круг­лая скоб­ка =108 минус x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 7 6 пра­вая круг­лая скоб­ка равна ...



24
Тип 24 № 8154
i

Ре­ши­те не­ра­вен­ство:  ко­рень из: на­ча­ло ар­гу­мен­та: 3 плюс x конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 3 минус x конец ар­гу­мен­та боль­ше 0.



25
Тип 25 № 8029
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­си­нус x,x_0= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби .



26
Тип 26 № 2556
i
Развернуть

Опре­де­ли­те объем вы­бор­ки.



27
Тип 27 № 3222
i
Развернуть

Чему равен пе­ри­метр по­тол­ка в ком­на­те?



28
Тип 28 № 2243
i
Развернуть

Опре­де­ли­те век­тор, рав­ный сумме век­то­ров  \overrightarrowAB_1 плюс \overrightarrowB_1E_1 плюс \overrightarrowF_1F.



29
Тип 29 № 3862
i
Развернуть

Опре­де­ли­те ко­ор­ди­на­ты цен­тра шара впи­сан­но­го в дан­ный куб.



30
Тип 30 № 3225
i
Развернуть

Kакова сто­и­мость ре­мон­та стен в ком­на­те, если учесть, что в ком­на­те 2 окна с раз­ме­ра­ми 2 м на 1,5 м и двери вы­со­той 2 м и ши­ри­ной 1 м?



31
Тип 31 № 7713
i

Функ­ция за­да­на урав­не­ни­ем y = синус x плюс 2. Уста­но­ви­те со­от­вет­ствие между наи­боль­шим и наи­мень­шим зна­че­ни­я­ми функ­ции и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Наи­боль­шее зна­че­ние функ­ции

Б) Наи­мень­шее зна­че­ние функ­ции

1) 3

2) 2

3) −1

4) 1


Ответ:

32
Тип 32 № 7823
i

Три окруж­но­сти ра­ди­у­са­ми 2 каж­дая по­пар­но ка­са­ют­ся внеш­ним об­ра­зом. Уста­но­ви­те со­от­вет­ствие между дли­ной сто­ро­ны тре­уголь­ни­ка, об­ра­зо­ван­но­го цен­тра­ми окруж­но­стей, его пло­ща­дью и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Длина сто­ро­ны тре­уголь­ни­ка

Б) Пло­щадь тре­уголь­ни­ка

1) 4 ко­рень из 3

2) 2

3) 16

4) 4


Ответ:

33
Тип 33 № 8163
i

Най­ди­те два на­ту­раль­ных числа a и b, от­но­ше­ние ко­то­рых равно 2, а от­но­ше­ние суммы их квад­ра­тов к их сумме равно 5. Уста­но­ви­те со­от­вет­ствия:

A) Число a при­над­ле­жит про­ме­жут­ку

Б) Число b при­над­ле­жит про­ме­жут­ку

1) [3; 5)

2) (0; 1)

3) (5; 6]

4) (6; 8)


Ответ:

34
Тип 34 № 7778
i

Даны урав­не­ния x в квад­ра­те минус 11x плюс 24 = 0 и  левая круг­лая скоб­ка 0,25 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2 минус x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 128, зна­ме­на­тель: 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка конец дроби . Уста­но­ви­те со­от­вет­ствия:

A) Число яв­ля­ет­ся кор­нем пер­во­го урав­не­ния, но не яв­ля­ет­ся кор­нем вто­ро­го урав­не­ния

Б) Число яв­ля­ет­ся кор­нем обоих урав­не­ний

1) 2

2) 8

3) 1

4) 3


Ответ:

35
Тип 35 № 7803
i

В ариф­ме­ти­че­ской про­грес­сии (an) тре­тий член равен 20, раз­ность про­грес­сии d  =  –3,2. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) a1

Б) S6

1) 100,8

2) 110,4

3) 26,4

4) 16,8


Ответ:

36
Тип 36 № 6968
i

Зна­че­ние вы­ра­же­ния 8 ко­рень из 3 плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 конец дроби ко­рень из: на­ча­ло ар­гу­мен­та: 192 конец ар­гу­мен­та равно:



37
Тип 37 № 7789
i

Най­ди­те зна­че­ние вы­ра­же­ния  тан­генс 225 гра­ду­сов ко­си­нус 330 гра­ду­сов \ctg120 гра­ду­сов синус 240 гра­ду­сов .



38
Тип 38 № 3647
i

Из пред­ло­жен­ных ниже ва­ри­ан­тов от­ве­тов, най­ди­те общую фор­му­лу n-го члена по­сле­до­ва­тель­но­сти:

 дробь: чис­ли­тель: 1, зна­ме­на­тель: 1 умно­жить на 4 конец дроби ;  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 умно­жить на 7 конец дроби ;  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 умно­жить на 10 конец дроби ;  дробь: чис­ли­тель: 4, зна­ме­на­тель: 7 умно­жить на 13 конец дроби ;  ...



39
Тип 39 № 8094
i

Ре­ши­те си­сте­му

 си­сте­ма вы­ра­же­ний новая стро­ка 9 умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс 7 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка =457, новая стро­ка 6 умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус 14 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка = минус 890. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния 2x плюс y.



40
Тип 40 № 3305
i

Через вер­ши­ну остро­го угла пря­мо­уголь­но­го тре­уголь­ни­ка ABC с пря­мым углом C про­ве­де­на пря­мая AD, пер­пен­ди­ку­ляр­ная плос­ко­сти тре­уголь­ни­ка. Най­ди­те рас­сто­я­ние от точки D до вер­ши­ны B, если AC = 8, BC = 9 и AD = 10.


Завершить работу, свериться с ответами, увидеть решения.