Вариант № 27439

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 7849
i

Вы­чис­ли­те  дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та минус 1 конец дроби минус дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та конец дроби .



2

3
Тип 3 № 6922
i

Най­ди­те зна­че­ние вы­ра­же­ния 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби \ctg дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби .



4
Тип 4 № 1959
i

Дан­ное вы­ра­же­ние  минус левая круг­лая скоб­ка 3,5x минус y пра­вая круг­лая скоб­ка плюс 3 левая круг­лая скоб­ка минус 2y плюс 0,5x пра­вая круг­лая скоб­ка имеет стан­дарт­ный вид



5
Тип 5 № 3206
i

Сумма кор­ней квад­рат­но­го урав­не­ния  минус 3 x в квад­ра­те плюс 5 x плюс 8=0 равна



6
Тип 6 № 2188
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 5x минус 2y = 15, минус 2x плюс y = минус 7. конец си­сте­мы .



7
Тип 7 № 4162
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка x в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка плюс 2x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка минус x в кубе плюс 3 пра­вая круг­лая скоб­ка dx.



8
Тип 8 № 4105
i

Пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра равна 15 Пи . Най­ди­те объем V ци­лин­дра, если из­вест­но, что ра­ди­ус его ос­но­ва­ния боль­ше вы­со­ты на 3,5. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 6 умно­жить на V, зна­ме­на­тель: Пи конец дроби .



9
Тип 9 № 2059
i

Pешите си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 8 пра­вая круг­лая скоб­ка боль­ше 0,x в квад­ра­те минус 6x плюс 8 боль­ше или равно 0. конец си­сте­мы .



10
Тип 10 № 6953
i

Ре­ши­те урав­не­ние:  ко­си­нус левая круг­лая скоб­ка 4x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка =1.



11
Тип 11 № 4203
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =3 левая круг­лая скоб­ка 1 минус 3x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 4x плюс 5 пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка 3;6 пра­вая круг­лая скоб­ка .



12
Тип 12 № 3380
i

Ре­ши­те не­ра­вен­ство:  дробь: чис­ли­тель: 3x плюс 9, зна­ме­на­тель: 3 минус x конец дроби боль­ше или равно 0.



13
Тип 13 № 7905
i

Най­ди­те пло­щадь тре­уголь­ни­ка со сто­ро­на­ми 9, 40, 41.



14
Тип 14 № 4138
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 1 до 4, ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та левая круг­лая скоб­ка 3 минус дробь: чис­ли­тель: 7, зна­ме­на­тель: x конец дроби пра­вая круг­лая скоб­ка dx.



15
Тип 15 № 3210
i

Oтре­зок АD пер­пен­ди­ку­ля­рен плос­ко­сти (BCD). Пря­мая ВС — общее ребро плос­ко­стей (ВАС) и (ВDC). Пер­пен­ди­ку­ляр, опу­щен­ный из точки А на ребро ВС равен 2а, а пер­пен­ди­ку­ляр опу­щен­ный из точки D на ребро ВС равен а, тогда угол между плос­ко­стя­ми равен



16
Тип 16 № 6959
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те плюс 3x конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: 1 минус x конец ар­гу­мен­та = ко­рень из: на­ча­ло ар­гу­мен­та: 12 минус x конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: 1 минус x конец ар­гу­мен­та .



17
Тип 17 № 3276
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 5 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те минус 2x пра­вая круг­лая скоб­ка мень­ше или равно 125, левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 7 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2x в квад­ра­те минус 3x пра­вая круг­лая скоб­ка боль­ше или равно дробь: чис­ли­тель: 1, зна­ме­на­тель: 49 конец дроби . конец си­сте­мы .



18
Тип 18 № 7907
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной па­ра­бо­ла­ми: y=x в квад­ра­те плюс 1,y=x в квад­ра­те минус 1, минус 10 мень­ше или равно x мень­ше или равно 10.



19
Тип 19 № 7911
i

Кар­тин­ка имеет форму пря­мо­уголь­ни­ка со сто­ро­на­ми 24 см и 38 см. Её на­кле­и­ли на бу­ма­гу так, что во­круг кар­тин­ки по­лу­чи­лась окан­тов­ка оди­на­ко­вой ши­ри­ны. Пло­щадь, ко­то­рую за­ни­ма­ет кар­тин­ка с окан­тов­кой, равна 1976 см2. Ка­ко­ва ши­ри­на окан­тов­ки?



20
Тип 20 № 3277
i

Между чис­ла­ми А = 6 и B= дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби вставь­те по­ло­жи­тель­ное число С так, чтобы по­лу­чи­лось три по­сле­до­ва­тель­ных члена А, С и В гео­мет­ри­че­ской про­грес­сии. Число С равно



21
Тип 21 № 7959
i

Най­ди­те ко­ор­ди­на­ты век­то­ра \veca, если \veca=4\vecp плюс \veci,\vecp= левая круг­лая скоб­ка 5; минус 2 пра­вая круг­лая скоб­ка ,\veci= левая круг­лая скоб­ка минус 7;3 пра­вая круг­лая скоб­ка .



22
Тип 22 № 7887
i

Упро­сти­те вы­ра­же­ние  ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те конец ар­гу­мен­та минус 3, при x боль­ше минус 1.



23
Тип 23 № 7924
i

Ре­ши­те урав­не­ние \log _2\log _3 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка =2.



24
Тип 24 № 7740
i

Ре­ши­те не­ра­вен­ство 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка боль­ше 34.



25
Тип 25 № 8026
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка ,x_0=2.



26
Тип 26 № 3859
i
Развернуть

Опре­де­ли­те ко­ор­ди­на­ты точки B.



27
Тип 27 № 2242
i
Развернуть

Опре­де­ли­те длину по­лу­чен­но­го век­то­ра.



28
Тип 28 № 3861
i
Развернуть

Опре­де­ли­те ко­ор­ди­на­ты точки C.



29
Тип 29 № 3862
i
Развернуть

Опре­де­ли­те ко­ор­ди­на­ты цен­тра шара впи­сан­но­го в дан­ный куб.



30
Тип 30 № 3863
i
Развернуть

Для из­го­тов­ле­ния де­та­ли в форме шара со­ставь­те его урав­не­ние.



31
Тип 31 № 7715
i

Функ­ция за­да­на урав­не­ни­ем y = ко­си­нус x минус 4. Уста­но­ви­те со­от­вет­ствие между наи­боль­шим и наи­мень­шим зна­че­ни­я­ми функ­ции и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Наи­боль­шее зна­че­ние функ­ции

Б) Наи­мень­шее зна­че­ние функ­ции

1) −3

2) −5

3) −1

4) 3


Ответ:

32
Тип 32 № 7823
i

Три окруж­но­сти ра­ди­у­са­ми 2 каж­дая по­пар­но ка­са­ют­ся внеш­ним об­ра­зом. Уста­но­ви­те со­от­вет­ствие между дли­ной сто­ро­ны тре­уголь­ни­ка, об­ра­зо­ван­но­го цен­тра­ми окруж­но­стей, его пло­ща­дью и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Длина сто­ро­ны тре­уголь­ни­ка

Б) Пло­щадь тре­уголь­ни­ка

1) 4 ко­рень из 3

2) 2

3) 16

4) 4


Ответ:

33
Тип 33 № 8163
i

Най­ди­те два на­ту­раль­ных числа a и b, от­но­ше­ние ко­то­рых равно 2, а от­но­ше­ние суммы их квад­ра­тов к их сумме равно 5. Уста­но­ви­те со­от­вет­ствия:

A) Число a при­над­ле­жит про­ме­жут­ку

Б) Число b при­над­ле­жит про­ме­жут­ку

1) [3; 5)

2) (0; 1)

3) (5; 6]

4) (6; 8)


Ответ:

34
Тип 34 № 7770
i

Даны урав­не­ния x в квад­ра­те плюс 8x минус 9 = 0 и 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка = 32. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) −9, 3, 1

2) −1, 0, 2

3) −9, 4, 1

4) 7, 8, 9


Ответ:

35
Тип 35 № 7803
i

В ариф­ме­ти­че­ской про­грес­сии (an) тре­тий член равен 20, раз­ность про­грес­сии d  =  –3,2. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) a1

Б) S6

1) 100,8

2) 110,4

3) 26,4

4) 16,8


Ответ:

36
Тип 36 № 3686
i

Вы­бе­ри­те про­ме­жут­ки, в ко­то­рые вхо­дит при­бли­жен­ное зна­че­ние ве­ли­чи­ны угла 30°, вы­ра­жен­но­го в ра­ди­а­нах.



37
Тип 37 № 7789
i

Най­ди­те зна­че­ние вы­ра­же­ния  тан­генс 225 гра­ду­сов ко­си­нус 330 гра­ду­сов \ctg120 гра­ду­сов синус 240 гра­ду­сов .



38
Тип 38 № 3835
i

Дана по­сле­до­ва­тель­ность на­ту­раль­ных чисел, мень­ших 170, да­ю­щих оста­ток 1 при де­ле­нии на 19. Вы­бе­ри­те вер­ные утвер­жде­ния.



39
Тип 39 № 8094
i

Ре­ши­те си­сте­му

 си­сте­ма вы­ра­же­ний новая стро­ка 9 умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс 7 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка =457, новая стро­ка 6 умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус 14 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка = минус 890. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния 2x плюс y.



40
Тип 40 № 3550
i

Точка A — центр шара. По дан­ным ри­сун­ка най­ди­те пло­щадь сфе­ри­че­ской части мень­ше­го ша­ро­во­го сег­мен­та.


Завершить работу, свериться с ответами, увидеть решения.