Вариант № 27436

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 7854
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: минус 7 конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 32 конец ар­гу­мен­та умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 49 конец ар­гу­мен­та минус 7 дробь: чис­ли­тель: ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 64 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: минус 2 конец ар­гу­мен­та конец дроби .



2
Тип 2 № 8192
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 2 левая круг­лая скоб­ка x в квад­ра­те минус y пра­вая круг­лая скоб­ка , зна­ме­на­тель: x минус 6 конец дроби минус 2x плюс дробь: чис­ли­тель: 3x минус y, зна­ме­на­тель: 6 минус x конец дроби при x  =  −1, y  =  5.



3
Тип 3 № 6935
i

Най­ди­те зна­че­ние вы­ра­же­ния  минус 18 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та синус левая круг­лая скоб­ка минус 135 гра­ду­сов пра­вая круг­лая скоб­ка .



4
Тип 4 № 8134
i

Опре­де­ли­те сте­пень мно­го­чле­на: 2x в квад­ра­те y в сте­пе­ни 7 минус 4x в сте­пе­ни 7 плюс 2xy минус 18.



5
Тип 5 № 2467
i

Из дан­ных пар чисел ука­жи­те ту, ко­то­рая яв­ля­ет­ся ре­ше­ни­ем урав­не­ния 6x минус 5y плюс 12 = 0.



6
Тип 6 № 6940
i

Ре­ши­те си­сте­му урав­не­ний

 си­сте­ма вы­ра­же­ний xy=12,x левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка =6. конец си­сте­мы .

Если (x0; y0) — ре­ше­ние этой си­сте­мы, то x0 + y0 = 


7
Тип 7 № 4176
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка e в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка плюс e в сте­пе­ни левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка плюс e в сте­пе­ни левая круг­лая скоб­ка 3x минус 5 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx.



8
Тип 8 № 3360
i

Усе­чен­ный конус имеет вы­со­ту 12 см, а ра­ди­у­сы его верх­не­го и ниж­не­го ос­но­ва­ния равны 4 см и 20 см. Най­ди­те об­ра­зу­ю­щую усе­чен­но­го ко­ну­са.



9
Тип 9 № 8139
i

Най­ди­те наи­боль­шее целое ре­ше­ние си­сте­мы не­ра­венств  си­сте­ма вы­ра­же­ний |x плюс 2| мень­ше или равно 8, дробь: чис­ли­тель: x в квад­ра­те минус 6x плюс 5, зна­ме­на­тель: x в квад­ра­те минус 5 конец дроби боль­ше 1. конец си­сте­мы .



10
Тип 10 № 6951
i

Ре­ши­те урав­не­ние:  синус x ко­си­нус x= дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .



11
Тип 11 № 4201
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =5x левая круг­лая скоб­ка x в квад­ра­те плюс 4 пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 2;3 пра­вая круг­лая скоб­ка .



12
Тип 12 № 3809
i

Ре­ше­ни­ем не­ра­вен­ства \absx плюс 2 боль­ше 1 яв­ля­ет­ся чис­ло­вой про­ме­жу­ток?



13
Тип 13 № 2724
i

Най­ди­те пло­щадь за­штри­хо­ван­ной фи­гу­ры (см. рис).



14
Тип 14 № 2124
i

Bычис­ли­те ин­те­грал:  при­над­ле­жит t_ минус 5 в сте­пе­ни левая круг­лая скоб­ка 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те d x.



15
Тип 15 № 2405
i

Най­ди­те объем пра­виль­ной тре­уголь­ной усе­чен­ной пи­ра­ми­ды, вы­со­та ко­то­рой 6 м и сто­ро­ны ос­но­ва­ний 3 м и 4 м.



16
Тип 16 № 6964
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния 6 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка плюс 108=2 в сте­пе­ни левая круг­лая скоб­ка 2 минус x в квад­ра­те пра­вая круг­лая скоб­ка умно­жить на 12 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка .



17
Тип 17 № 2118
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний де­ся­тич­ный ло­га­рифм x плюс де­ся­тич­ный ло­га­рифм y = 1,x минус y = 3. конец си­сте­мы .



18
Тип 18 № 4159
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=x в квад­ра­те плюс 3,y=3, минус 2 мень­ше или равно x мень­ше или равно 4.



19
Тип 19 № 7917
i

Най­ди­те углы между сто­ро­на­ми ромба, если его пло­щадь равна 12,5, а сто­ро­на равна 5.



20
Тип 20 № 2192
i

Най­ди­те пер­вый член ариф­ме­ти­че­ской про­грес­сии, если сумма два­дца­ти яти пер­вых чле­нов про­грес­сии равна 250 и d = 3.



21
Тип 21 № 7991
i

Най­ди­те ко­ор­ди­на­ты век­то­ра \overrightarrowAB, если из­вест­но, что A левая круг­лая скоб­ка 2; минус 3; минус 10 пра­вая круг­лая скоб­ка ; \ левая квад­рат­ная скоб­ка C левая круг­лая скоб­ка минус 5;2;3 пра­вая круг­лая скоб­ка ,\ пра­вая квад­рат­ная скоб­ка B — се­ре­ди­на от­рез­ка AC.



22
Тип 22 № 3531
i

Упро­сти­те:

 дробь: чис­ли­тель: левая круг­лая скоб­ка b в сте­пе­ни левая круг­лая скоб­ка 1,2 пра­вая круг­лая скоб­ка плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка в кубе плюс левая круг­лая скоб­ка b в сте­пе­ни левая круг­лая скоб­ка 1,2 пра­вая круг­лая скоб­ка минус ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка в кубе , зна­ме­на­тель: b в сте­пе­ни левая круг­лая скоб­ка 2,4 пра­вая круг­лая скоб­ка плюс 6 конец дроби .



23
Тип 23 № 6967
i

Пусть x0  — наи­боль­ший ко­рень урав­не­ния \log в квад­ра­те _9 левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 81 конец дроби пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию 9 x минус 22=0, тогда зна­че­ние вы­ра­же­ния 3 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x_0 конец ар­гу­мен­та равно ...



24
Тип 24 № 3653
i

Ре­ши­те не­ра­вен­ство: 2 синус x минус 1 боль­ше 0.



25
Тип 25 № 8021
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =2 ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та минус 5,x_0=1.



26
Тип 26 № 2136
i
Развернуть

Най­ди­те пе­ри­метр ос­но­ва­ния дач­но­го до­ми­ка.



27
Тип 27 № 3467
i
Развернуть

Сколь­ки­ми спо­со­ба­ми Ма­ди­на может вы­брать в ма­га­зи­не ком­плект «чашка+блюд­це»?



28
Тип 28 № 2138
i
Развернуть

Hай­ди­те объем дач­но­го до­ми­ка (без учета крыши дома).



29
Тип 29 № 2139
i
Развернуть

Eсли уве­ли­чить ши­ри­ну ос­но­ва­ния дач­но­го до­ми­ка на 3 м, а его длину на 4 м, то во сколь­ко раз уве­ли­чит­ся пло­щадь ос­но­ва­ния дач­но­го до­ми­ка.



30
Тип 30 № 2805
i
Развернуть

Если  дробь: чис­ли­тель: 1, зна­ме­на­тель: 12 конец дроби часть торта по­ме­стить в пря­мо­уголь­ный кон­тей­нер раз­ме­ра­ми 12 см × 10 см × 10 см. Какой объём кон­тей­не­ра ока­жет­ся не­за­пол­нен­ным?



31
Тип 31 № 7722
i

Функ­ция за­да­на урав­не­ни­ем y = левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка минус 2. Уста­но­ви­те со­от­вет­ствия:

A) Нуль функ­ции

Б) Мно­же­ство зна­че­ний функ­ции

1) 1

2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

3) 0

4)  левая круг­лая скоб­ка минус 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка


Ответ:

32
Тип 32 № 8162
i

Рав­но­бед­рен­ная тра­пе­ция опи­са­на около окруж­но­сти, ра­ди­ус ко­то­рой равен 12. Бо­ко­вая сто­ро­ны тра­пе­ции равна 25. Уста­но­ви­те со­от­вет­ствия:

A) Сред­няя линия тра­пе­ции

Б) Вы­со­та тра­пе­ции

1) 20

2) 25

3) 21

4) 24


Ответ:

33
Тип 33 № 7733
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка в кубе левая круг­лая скоб­ка 2x плюс 4 пра­вая круг­лая скоб­ка . Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x, сум­мой ко­эф­фи­ци­ен­тов мно­го­чле­на и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x

Б) Сумма ко­эф­фи­ци­ен­тов мно­го­чле­на

1) (−1; 1)

2) (0; 3)

3) [7; 12)

4) [−4; 0)


Ответ:

34

Даны урав­не­ния 3 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те минус 2x пра­вая круг­лая скоб­ка = 27 и  ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 1 конец ар­гу­мен­та плюс 1 = x. Уста­но­ви­те со­от­вет­ствия:

A) Число яв­ля­ет­ся кор­нем пер­во­го урав­не­ния, но не яв­ля­ет­ся кор­нем вто­ро­го урав­не­ния

Б) Число яв­ля­ет­ся кор­нем обоих урав­не­ний

1) −1

2) 2

3) 3

4) 1


Ответ:

35
Тип 35 № 7808
i

Ариф­ме­ти­че­ская про­грес­сия (an) за­да­ет­ся фор­му­лой n⁠-⁠го члена: a_n=2,6n минус 7. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) a7

Б) a_4 минус a_1

1) 5,2

2) 11,2

3) 7,8

4) 10,4


Ответ:

36
Тип 36 № 8043
i

Упро­сти­те вы­ра­же­ние 5 левая круг­лая скоб­ка 2m плюс 5n пра­вая круг­лая скоб­ка минус 3 левая круг­лая скоб­ка 5n минус 3m пра­вая круг­лая скоб­ка .



37
Тип 37 № 7795
i

Зна­че­ние вы­ра­же­ния 10 ко­си­нус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби синус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби равно



38
Тип 38 № 8045
i

Если в ариф­ме­ти­че­ской про­грес­сии a_3=4 и a_5=12, то вы­чис­ли­те сумму пер­во­го члена и раз­но­сти этой про­грес­сии



39
Тип 39 № 8111
i

Ре­ши­те си­сте­му урав­не­ний:

 си­сте­ма вы­ра­же­ний новая стро­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 2x минус y конец дроби плюс дробь: чис­ли­тель: 3, зна­ме­на­тель: x минус 2y конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби , новая стро­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 2x минус y конец дроби минус дробь: чис­ли­тель: 1, зна­ме­на­тель: x минус 2y конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 18 конец дроби . конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния x умно­жить на y.



40
Тип 40 № 2185
i

Вы­бе­ри­те из ни­же­пе­ре­чис­лен­ных от­ве­тов де­ли­те­ли числа, рав­но­го зна­че­нию пло­ща­ди бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной приз­мы, опи­сан­ной около ци­лин­дра, ра­ди­ус ос­но­ва­ния ко­то­ро­го равен  ко­рень из 3 , а вы­со­та равна 3.


Завершить работу, свериться с ответами, увидеть решения.