Вариант № 27435

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 2097
i

Вы­чис­ли­те:  левая круг­лая скоб­ка 2 ко­рень из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та плюс 3 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та минус 7 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та плюс 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та пра­вая круг­лая скоб­ка .



2
Тип 2 № 7857
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: 9b, зна­ме­на­тель: a минус b конец дроби умно­жить на дробь: чис­ли­тель: a в квад­ра­те минус ab, зна­ме­на­тель: 54b конец дроби и най­ди­те его зна­че­ние при a= минус 63, b=9,6.



3
Тип 3 № 6925
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 18 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 72 конец ар­гу­мен­та синус в квад­ра­те дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 8 конец дроби .



4
Тип 4 № 3810
i

Упро­сти­те вы­ра­же­ние и за­пи­ши­те в стан­дарт­ном виде:  левая круг­лая скоб­ка a плюс 5 пра­вая круг­лая скоб­ка в квад­ра­те минус 5a левая круг­лая скоб­ка 2 минус a пра­вая круг­лая скоб­ка .



5
Тип 5 № 3416
i

Ра­вен­ство | минус 7 плюс 3 k |=2 верно, если  k равно



6
Тип 6 № 2053
i

Pешите си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 3x плюс 5y = 16,2x плюс 3y = 9. конец си­сте­мы .



7
Тип 7 № 4183
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка 3 ко­си­нус x минус 2 синус x пра­вая круг­лая скоб­ка dx.



8
Тип 8 № 8145
i

Об­ра­зу­ю­щая ко­ну­са равна 4 и со­став­ля­ет с плос­ко­стью ос­но­ва­ния угол 30°. Най­ди­те пло­щадь ос­но­ва­ния ко­ну­са.



9
Тип 9 № 3909
i

Ре­ши­те си­сте­му не­ра­венств: Not match begin/end



10
Тип 10 № 1945
i

Ре­ши­те урав­не­ние  синус в квад­ра­те x минус 17 синус x плюс 16 = 0 и най­ди­те его корни на x при­над­ле­жит левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .



11
Тип 11 № 4208
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =e в сте­пе­ни левая круг­лая скоб­ка 3x минус 5 пра­вая круг­лая скоб­ка минус 5e в сте­пе­ни левая круг­лая скоб­ка 2x плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 1;4 пра­вая круг­лая скоб­ка .



12
Тип 12 № 2022
i

Зна­че­ние пе­ре­мен­ной х, при ко­то­ром верно не­ра­вен­ство:  дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби мень­ше x мень­ше дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .



13
Тип 13 № 3643
i

Cто­ро­ны тре­уголь­ни­ка равны 4 см, 5 см, 6 см. Най­ди­те про­ек­цию сред­ней сто­ро­ны на боль­шую.



14
Тип 14 № 4127
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 4 до 5, левая круг­лая скоб­ка 3x в квад­ра­те минус 2x пра­вая круг­лая скоб­ка dx.



15
Тип 15 № 3325
i

Ос­но­ва­ни­ем пра­виль­ной тре­уголь­ной пи­ра­ми­ды яв­ля­ет­ся рав­но­сто­рон­ний тре­уголь­ник со сто­ро­ной 6 см. Вы­со­та пи­ра­ми­ды равна 9 см. Най­ди­те объем пи­ра­ми­ды.



16
Тип 16 № 8129
i

Ре­ши­те урав­не­ние  левая круг­лая скоб­ка 0,25 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2 минус x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 128, зна­ме­на­тель: 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка конец дроби



17
Тип 17 № 3463
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка x в квад­ра­те боль­ше или равно ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка 75 минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка 3, 2 левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка боль­ше 4. конец си­сте­мы .



18
Тип 18 № 8188
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной гра­фи­ком функ­ции y = x в квад­ра­те минус 8x плюс 16 и гра­фи­ком ее про­из­вод­ной.



19
Тип 19 № 2482
i

В тра­пе­цию, у ко­то­рой ниж­нее ос­но­ва­ние в два раза боль­ше верх­не­го и бо­ко­вая сто­ро­на равна 9, впи­са­на окруж­ность. Ра­ди­ус окруж­но­сти равен:



20
Тип 20 № 3816
i

Сумма бес­ко­неч­но убы­ва­ю­щей про­грес­сии равна 32, а сумма ее пер­вых че­ты­рех чле­нов 30. Чему равен пер­вый член дан­ной про­грес­сии?



21
Тип 21 № 7975
i

Най­ди­те ко­ор­ди­на­ты век­то­ра \vecp, если при па­рал­лель­ном пе­ре­но­се на век­тор \vecp точка A левая круг­лая скоб­ка минус 5;6; минус 77 пра­вая круг­лая скоб­ка пе­ре­хо­дит в точку B, а B левая круг­лая скоб­ка 1;2;3 пра­вая круг­лая скоб­ка .



22
Тип 22 № 2201
i

Вы­чис­ли­те:  дробь: чис­ли­тель: 72 в сте­пе­ни левая круг­лая скоб­ка 2k плюс 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 6 в сте­пе­ни левая круг­лая скоб­ка 6k пра­вая круг­лая скоб­ка умно­жить на 9 в сте­пе­ни левая круг­лая скоб­ка 1 минус k пра­вая круг­лая скоб­ка конец дроби .



23
Тип 23 № 8008
i

Ре­ши­те урав­не­ние \log _1 плюс x левая круг­лая скоб­ка 2x в кубе плюс 2x в квад­ра­те минус 3x плюс 1 пра­вая круг­лая скоб­ка =3.



24
Тип 24 № 7741
i

Ре­ши­те не­ра­вен­ство \log _4 левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка боль­ше или равно 0,5.



25
Тип 25 № 8065
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 2, зна­ме­на­тель: x в квад­ра­те минус 3x конец дроби ,x_0=4.



26
Тип 26 № 8156
i
Развернуть

Най­ди­те пло­щадь ос­но­ва­ния ко­ну­са, π ≈ 3.



27
Тип 27 № 2067
i
Развернуть

Oпре­де­ли­те, сколь­ки­ми спо­со­ба­ми пара смо­жет раз­ме­стить­ся в одном Купе.



28
Тип 28 № 8158
i
Развернуть

На сколь­ко умень­шит­ся бо­ко­вая по­верх­ность кол­па­ка, если вы­со­ту умень­шить на 9 см, а ра­ди­ус ос­но­ва­ния уве­ли­чить на 1 см?



29
Тип 29 № 3469
i
Развернуть

Сколь­ки­ми спо­со­ба­ми Ма­ди­на может ку­пить в ма­га­зи­не ком­плект «2 чашки+блю­ю­це+3 ложки»?



30
Тип 30 № 3470
i
Развернуть

Ма­ди­на ку­пи­ла ком­плект из 5 чашек: 3 из них се­реб­ря­ные, 2 про­стые; 8 блюд­цев: 5 се­реб­ря­ных, 3 про­стых; 7 ложек: 5 се­реб­ря­ных, 2 про­стых. Сколь­ки­ми спо­со­ба­ми Ма­ди­на может вы­брать ком­плект пред­ме­тов, со­сто­я­щих из двух се­реб­ря­ных чашек, трех се­реб­ря­ных блюд­цев и одной про­стой ложки.



31
Тип 31 № 7711
i

Квад­ра­тич­ная функ­ция за­да­на урав­не­ни­ем y = x в квад­ра­те плюс 4x минус 5. Уста­но­ви­те со­от­вет­ствие между ну­ля­ми функ­ции и ко­ор­ди­на­та­ми вер­ши­ны па­ра­бо­лы.

A)  Нули функ­ции

Б)  Ко­ор­ди­на­ты вер­ши­ны па­ра­бо­лы

1)  (−2; −9)

2)  {−5; 1}

3)  {1; 5}

4)  (4; −5)


Ответ:

32
Тип 32 № 7835
i

В пря­мую приз­му, в ос­но­ва­нии ко­то­рой лежит тре­уголь­ник со сто­ро­на­ми 3, 4, 5, впи­сан шар. Уста­но­ви­те со­от­вет­ствие между вы­со­той приз­мы, объ­е­мом приз­мы и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Вы­со­та приз­мы

Б) Объем приз­мы

1) 2

2) 4

3) 6

4) 12


Ответ:

33
Тип 33 № 7765
i

Най­ди­те два на­ту­раль­ных числа x и y, x > y, если из­вест­но, что сумма чисел x и y равна 7, а про­из­ве­де­ние раз­но­сти этих чисел на раз­ность квад­ра­тов этих чисел равно 175.

A) Число x при­над­ле­жит про­ме­жут­ку

Б) Число y при­над­ле­жит про­ме­жут­ку

1) [3; 4]

2) (5; 7)

3) [1; 2)

4) (2; 3)


Ответ:

34
Тип 34 № 7790
i

Даны урав­не­ния  дробь: чис­ли­тель: x минус 4, зна­ме­на­тель: x минус 6 конец дроби = 2 и x в квад­ра­те минус x минус 6=0. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) −2, 3, 8

2) −2, 8, 1

3) −3, 5, 1

4) 3, −1, 8


Ответ:

35
Тип 35 № 7815
i

У гео­мет­ри­че­ской про­грес­сии сумма пер­во­го и вто­ро­го чле­нов равна 75, а сумма вто­ро­го и тре­тье­го чле­нов равна 150. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) b1

Б) b3

1) 25

2) 2

3) 100

4) 75


Ответ:

36
Тип 36 № 3923
i

Упро­сти­те  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 7 пра­вая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 7 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 7 ко­рень из: на­ча­ло ар­гу­мен­та: 7 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та конец ар­гу­мен­та конец ар­гу­мен­та .



37
Тип 37 № 7802
i

Зна­че­ние вы­ра­же­ния 12 синус дробь: чис­ли­тель: 9 Пи , зна­ме­на­тель: 8 конец дроби ко­си­нус дробь: чис­ли­тель: 9 Пи , зна­ме­на­тель: 8 конец дроби равно



38
Тип 38 № 8086
i

Три по­ло­жи­тель­ных числа, взя­тые в опре­де­лен­ном по­ряд­ке, об­ра­зу­ют ариф­ме­ти­че­скую про­грес­сию. Если сред­нее из чисел умень­шить в 3 раза, то в том же по­ряд­ке по­лу­чит­ся убы­ва­ю­щая гео­мет­ри­че­ская про­грес­сия. Найти ее зна­ме­на­тель.



39
Тип 39 № 8090
i

Ре­ши­те си­сте­му, со­дер­жа­щую ир­ра­ци­о­наль­ное урав­не­ние

 си­сте­ма вы­ра­же­ний новая стро­ка ко­рень из: на­ча­ло ар­гу­мен­та: x плюс y минус 1 конец ар­гу­мен­та =1, новая стро­ка ко­рень из: на­ча­ло ар­гу­мен­та: x минус y плюс 2 конец ар­гу­мен­та =2y минус 2. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния x плюс y.



40
Тип 40 № 3933
i

SABCD — пра­виль­ная че­ты­рех­уголь­ная пи­ра­ми­да, сто­ро­на ос­но­ва­ния ко­то­рой 10, а бо­ко­вое ребро равно 2 ко­рень из: на­ча­ло ар­гу­мен­та: 22 конец ар­гу­мен­та . Най­ди­те пе­ри­метр се­че­ния плос­ко­стью, про­хо­дя­щей через точки B и D па­рал­лель­но ребру AS.


Завершить работу, свериться с ответами, увидеть решения.