Вариант № 27432

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 3855
i

Вы­чис­ли­те  дробь: чис­ли­тель: 49 в сте­пе­ни левая круг­лая скоб­ка 25 пра­вая круг­лая скоб­ка умно­жить на 625 в сте­пе­ни левая круг­лая скоб­ка 15 пра­вая круг­лая скоб­ка , зна­ме­на­тель: левая круг­лая скоб­ка 5 в сте­пе­ни левая круг­лая скоб­ка 12 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка 7 в сте­пе­ни левая круг­лая скоб­ка 16 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в кубе конец дроби .



2
Тип 2 № 7855
i

Упро­сти­те вы­ра­же­ние  левая круг­лая скоб­ка 2 минус c пра­вая круг­лая скоб­ка в квад­ра­те минус c левая круг­лая скоб­ка c плюс 4 пра­вая круг­лая скоб­ка , най­ди­те его зна­че­ние при c=0,5. В ответ за­пи­ши­те по­лу­чен­ное число.



3
Тип 3 № 8173
i

Упро­сти­те вы­ра­же­ние:  дробь: чис­ли­тель: ко­си­нус 50 гра­ду­сов плюс синус в квад­ра­те 25 гра­ду­сов , зна­ме­на­тель: ко­си­нус в квад­ра­те 25 гра­ду­сов конец дроби плюс 1.



4
Тип 4 № 3247
i

Раз­ло­жи­те квад­рат­ный трех­член 2x в квад­ра­те плюс 7x минус 15 на мно­жи­те­ли.



5
Тип 5 № 2133
i

Из ни­же­пе­ре­чис­лен­ных от­ве­тов вы­бе­ри­те корни урав­не­ния:  левая круг­лая скоб­ка x в квад­ра­те минус 1 пра­вая круг­лая скоб­ка в квад­ра­те минус 49 = 0.



6
Тип 6 № 3207
i

Pешите си­сте­му урав­не­ний  си­сте­ма вы­ра­же­ний 3 x минус 2 y=4, 5 x плюс 2 y=20. конец си­сте­мы .



7
Тип 7 № 4188
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка 2 ко­си­нус 2x минус 3 синус 3x пра­вая круг­лая скоб­ка dx.



8
Тип 8 № 3280
i

В шар ра­ди­у­сом 5 м впи­сан ци­линдр с диа­мет­ром ос­но­ва­ния 6 м. Вы­со­та ци­лин­дра равна



9
Тип 9 № 2064
i

Pешите си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: 2 минус x, зна­ме­на­тель: x плюс 1 конец дроби минус 1 боль­ше или равно 0, дробь: чис­ли­тель: 2 минус x, зна­ме­на­тель: x плюс 1 конец дроби минус 2 мень­ше или равно 0. конец си­сте­мы .



10
Тип 10 № 3517
i

Ре­ши­те урав­не­ние:  синус левая круг­лая скоб­ка 2x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка = 1.



11
Тип 11 № 4206
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =e в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс e в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка 0;8 пра­вая круг­лая скоб­ка .



12
Тип 12 № 1960
i

Bыбе­ри­те урав­не­ние, ко­то­рое яв­ля­ет­ся квад­рат­ным урав­не­ни­ем с одной пе­ре­мен­ной



13
Тип 13 № 3285
i

Най­ди­те угол В тре­уголь­ни­ка АВС, если А(1; 1), В(4; 1) и С(4; 5).



14
Тип 14 № 3840
i

По­ло­жи­тель­ный ко­рень  ин­те­грал пре­де­лы: от 0 до t, левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка dx =6 равен?



15
Тип 15 № 2020
i

Най­ди­те объем пра­виль­ной че­ты­рех­уголь­ной усе­чен­ной пи­ра­ми­ды, если сто­ро­ны ее ос­но­ва­ния 1 см и 9 см, а вы­со­та 6 см.



16
Тип 16 № 8127
i

Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 1 конец ар­гу­мен­та = ко­рень из: на­ча­ло ар­гу­мен­та: 9 минус 8x конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 4 конец ар­гу­мен­та .



17
Тип 17 № 3346
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка мень­ше или равно минус 1, ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка 5x минус 1 пра­вая круг­лая скоб­ка боль­ше или равно 2. конец си­сте­мы .



18
Тип 18 № 4151
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y= минус x в квад­ра­те плюс 2x,y= минус x минус 1.



19
Тип 19 № 3322
i

Окруж­ность ра­ди­у­са 4 впи­са­на в пря­мо­уголь­ную тра­пе­цию с тупым углом 150°. Пло­щадь тра­пе­ции равна



20
Тип 20 № 2128
i

Hай­ди­те част­ное  дробь: чис­ли­тель: b_1, зна­ме­на­тель: q конец дроби для гео­мет­ри­че­ской про­грес­сии, у ко­то­рой сумма пер­во­го и тре­тье­го чле­нов равна 40, а сумма вто­ро­го и чет­вер­то­го равна 80.



21
Тип 21 № 7982
i

В тет­ра­эд­ре DABC \overrightarrowDA=\veca, \overrightarrowDB=\vecb, \overrightarrowDC=\vecc, точки M и N  — се­ре­ди­ны рёбер AB и BC со­от­вет­ствен­но, точки K и L  — се­ре­ди­ны от­рез­ков AN и DM. Вы­ра­зи­те век­тор \overrightarrowBC через век­то­ры \veca, \vecb и \vecc.



22
Тип 22 № 3203
i

Упро­сти­те вы­ра­же­ние  левая круг­лая скоб­ка минус 3 a в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка b в квад­ра­те пра­вая круг­лая скоб­ка в кубе .



23
Тип 23 № 2481
i

Ре­ши­те урав­не­ние:  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка ко­рень из 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка тан­генс x плюс 4 пра­вая круг­лая скоб­ка = 2.



24
Тип 24 № 7752
i

Ре­ши­те не­ра­вен­ство 2 в сте­пе­ни x плюс 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка боль­ше или равно 144.



25
Тип 25 № 8062
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = тан­генс x,x_0= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби .



26
Тип 26 № 2066
i
Развернуть

Oпре­де­ли­те, сколь­ки­ми спо­со­ба­ми пара смо­жет раз­ме­стить­ся в одном купе СВ.



27
Тип 27 № 3397
i
Развернуть

Сколь­ко не­об­хо­дим о ко­ван­но­го де­ко­ра­тив­но­го угол­ка для об­рам­ле­ния бо­ко­вых углов (стык бо­ко­вых гра­ней) по­ста­мен­та.



28
Тип 28 № 2628
i
Развернуть

Учи­тель для де­мон­стра­ции на уроке решил по­ста­вить на одну полку шкафа толь­ко два тела вра­ще­ния. сколь­ко таких спо­со­бов су­ще­ству­ет (по­ря­док фигур на полке не имеет зна­че­ния)?



29
Тип 29 № 2629
i
Развернуть

Учи­тель для де­мон­стра­ции на уроке решил по­ста­вить на одну полку шкафа толь­ко два тела: одно тело вра­ще­ния и один мно­го­гран­ник. Сколь­ко спо­со­бов су­ще­ству­ет (по­ря­док фигур на полке не имеет зна­че­ния)?



30
Тип 30 № 2630
i
Развернуть

Ка­ко­ва ве­ро­ят­ность раз­ме­ще­ния на пер­вой полке двух тел вра­ще­ния (округ­ли­те до сотых)?



31
Тип 31 № 7708
i

Квад­ра­тич­ная функ­ция за­да­на урав­не­ни­ем y = x в квад­ра­те минус 1. Уста­но­ви­те со­от­вет­ствие между ну­ля­ми функ­ции и ко­ор­ди­на­та­ми вер­ши­ны па­ра­бо­лы.

A)  Нули функ­ции

Б)  Ко­ор­ди­на­ты вер­ши­ны па­ра­бо­лы

1)  (1; 0)

2)  {−1; 1}

3)  {−2; 2}

4)  (0; −1)


Ответ:

32
Тип 32 № 7840
i

Куб, объем ко­то­ро­го равен 8, впи­сан в шар. Уста­но­ви­те со­от­вет­ствие между ра­ди­у­сом шара, пло­ща­дью его по­верх­но­сти и чис­ло­вы­ми про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их зна­че­ния.

A) Ра­ди­ус шара

Б) Пло­щадь по­верх­но­сти шара

1) (0; 1)

2) [3; 4]

3) (1; 2]

4) (33; 40)


Ответ:

33
Тип 33 № 7763
i

Най­ди­те два числа x и y, x > y, если из­вест­но, что про­из­ве­де­ние кубов этих чисел равно −8, а сумма кубов этих чисел равна −7.

A) Число x при­над­ле­жит про­ме­жут­ку

Б) Число y при­над­ле­жит про­ме­жут­ку

1) (−3; 0)

2) (2; 4)

3) (5; 6]

4) [1; 2]


Ответ:

34
Тип 34 № 7771
i

Даны урав­не­ния  дробь: чис­ли­тель: x в квад­ра­те минус 6x плюс 5, зна­ме­на­тель: x минус 1 конец дроби = 0 и  левая круг­лая скоб­ка x в квад­ра­те минус 4 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x минус 1 конец ар­гу­мен­та = 0. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) 0, 3, 4

2) 5, 2, 8

3) −1, 0, 3

4) 5, 1, 2


Ответ:

35
Тип 35 № 7820
i

Гео­мет­ри­че­ская про­грес­сия за­да­ет­ся фор­му­лой  b_n =164 умно­жить на левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни n . Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) b1

Б) S4

1) 41

2) 71

3) 82

4) 153,75

2

Ответ:

36
Тип 36 № 3864
i

Вы­чис­ли­те зна­че­ние вы­ра­же­ния:  дробь: чис­ли­тель: \abs минус 2,5 плюс 4,6, зна­ме­на­тель: минус 1,6 плюс \abs2 умно­жить на 3,5 минус \abs минус 4 конец дроби .



37
Тип 37 № 7779
i

Зна­че­ние вы­ра­же­ния  ко­си­нус левая круг­лая скоб­ка альфа минус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка плюс ко­си­нус левая круг­лая скоб­ка альфа плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка равно



38
Тип 38 № 8071
i

Три числа, сумма ко­то­рых равна 26, об­ра­зу­ют гео­мет­ри­че­скую про­грес­сию. Если при­ба­вить к ним со­от­вет­ствен­но 1, 6, и 3, то по­лу­чат­ся числа, об­ра­зу­ю­щие ариф­ме­ти­че­скую про­грес­сию. Найти эти числа.



39
Тип 39 № 8095
i

Ре­ши­те си­сте­му

 си­сте­ма вы­ра­же­ний новая стро­ка 3 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка y плюс 1 пра­вая круг­лая скоб­ка =375, новая стро­ка 3 в сте­пе­ни левая круг­лая скоб­ка y минус 1 пра­вая круг­лая скоб­ка умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =15. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: x, зна­ме­на­тель: y конец дроби .



40
Тип 40 № 3233
i

Hай­ди­те пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра, по­лу­чив­ше­го­ся вра­ще­ни­ем куба со сто­ро­ной рав­ной 2 см во­круг пря­мой АА1.


Завершить работу, свериться с ответами, увидеть решения.