Вариант № 27431

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 3814
i

Упро­сти­те вы­ра­же­ние  ко­рень из: на­ча­ло ар­гу­мен­та: ко­рень из: на­ча­ло ар­гу­мен­та: 28 минус 16 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та конец ар­гу­мен­та конец ар­гу­мен­та .



2
Тип 2 № 7869
i

Най­ди­те зна­че­ние вы­ра­же­ния a в сте­пе­ни левая круг­лая скоб­ка 12 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка a в сте­пе­ни левая круг­лая скоб­ка минус 4 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни 4   при a = минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .



3
Тип 3 № 6928
i

Най­ди­те зна­че­ние вы­ра­же­ния 5 синус дробь: чис­ли­тель: 11 Пи , зна­ме­на­тель: 12 конец дроби умно­жить на ко­си­нус дробь: чис­ли­тель: 11 Пи , зна­ме­на­тель: 12 конец дроби .



4
Тип 4 № 7882
i

Пре­об­ра­зуй­те вы­ра­же­ние x в квад­ра­те плюс 4x плюс 2, вы­де­лив пол­ный квад­рат.



5
Тип 5 № 3377
i

Ре­ши­те урав­не­ние: \abs2x минус 1=4.



6
Тип 6 № 6941
i

Ре­ши­те си­сте­му урав­не­ний

 си­сте­ма вы­ра­же­ний xy= минус 12,x левая круг­лая скоб­ка 2y минус 1 пра­вая круг­лая скоб­ка = минус 18. конец си­сте­мы .

Если (x0; y0) — ре­ше­ние си­сте­мы, то x0 = 


7
Тип 7 № 4172
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс x в кубе плюс x минус 3, зна­ме­на­тель: x в квад­ра­те плюс 1 конец дроби dx.



8
Тип 8 № 3455
i

Ра­ди­ус верх­не­го ос­но­ва­ния усечённого ко­ну­са равен 2 м, вы­со­та — 6 м. Най­ди­те ра­ди­ус ниж­не­го ос­но­ва­ния, если его объём равен 38π м3.



9
Тип 9 № 7895
i

Наи­мень­шее на­ту­раль­ное ре­ше­ние си­сте­мы не­ра­венств  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: 3, зна­ме­на­тель: x плюс 4 конец дроби боль­ше или равно дробь: чис­ли­тель: 2, зна­ме­на­тель: x плюс 1 конец дроби , дробь: чис­ли­тель: 5, зна­ме­на­тель: x конец дроби боль­ше дробь: чис­ли­тель: 1, зна­ме­на­тель: x минус 5 конец дроби конец си­сте­мы . равно



10
Тип 10 № 6947
i

Какое из при­ве­ден­ных урав­не­ний не имеет кор­ней?



11
Тип 11 № 7900
i

Най­ди­те зна­че­ние про­из­вод­ной функ­ции x в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 8, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка плюс 63x минус 5x в кубе в точке x  =  1.



12
Тип 12 № 2155
i

Какой про­ме­жу­ток яв­ля­ет­ся ре­ше­ни­ем не­ра­вен­ства:  дробь: чис­ли­тель: x минус 1, зна­ме­на­тель: 2 минус x конец дроби мень­ше или равно 0.



13
Тип 13 № 1943
i

В тре­уголь­ни­ке ACB AC  =  6, MN  =  4, AB  =  4,8, MN || AB. Най­ди­те MC.



14
Тип 14 № 3389
i

Вы­чис­ли­те ин­те­грал:  при­над­ле­жит t_0 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка левая круг­лая скоб­ка синус 3 x ко­си­нус 2 x минус ко­си­нус 3 x синус 2 x пра­вая круг­лая скоб­ка d x.



15
Тип 15 № 3932
i

Най­ди­те угол между плос­ко­стя­ми, если  DC = MK =3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , DM =12 см и  CK =6 см.



16
Тип 16 № 2098
i

Ука­жи­те корни урав­не­ния:  левая круг­лая скоб­ка x в квад­ра­те минус 4 пра­вая круг­лая скоб­ка умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: x минус 1 конец ар­гу­мен­та = 0.



17
Тип 17 № 2088
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка = 4,x минус y = 4. конец си­сте­мы .



18
Тип 18 № 4147
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной двумя пря­мы­ми: y=2x плюс 4,y=3x минус 5,0 мень­ше или равно x мень­ше или равно 9.



19
Тип 19 № 2480
i

Внут­рен­ний угол пра­виль­но­го мно­го­уголь­ни­ка равен 172°. Ко­ли­че­ство сто­рон дан­но­го мно­го­уголь­ни­ка равно



20
Тип 20 № 8190
i

Ариф­ме­ти­че­ская про­грес­сия 5, 8, 11... и гео­мет­ри­че­ская про­грес­сия 4, 8, 16... имеют по 50 чле­нов. Сколь­ко оди­на­ко­вых чле­нов в обеих про­грес­си­ях?



21
Тип 21 № 7966
i

Век­тор \overrightarrowAB с кон­цом в точке B(5; 3) имеет ко­ор­ди­на­ты (3; 1). Най­ди­те ко­ор­ди­на­ты точки A.



22
Тип 22 № 3317
i

Со­кра­ти­те дробь:  дробь: чис­ли­тель: a в квад­ра­те плюс b в квад­ра­те плюс 2ab минус 9, зна­ме­на­тель: a в квад­ра­те плюс ab минус 3a конец дроби .



23
Тип 23 № 6966
i

Пусть x0  — наи­боль­ший ко­рень урав­не­ния \log в квад­ра­те _2 левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 32 конец дроби пра­вая круг­лая скоб­ка плюс 4 ло­га­рифм по ос­но­ва­нию 2 x минус 52=0, тогда зна­че­ние вы­ра­же­ния 7 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x_0 конец ар­гу­мен­та равно ...



24
Тип 24 № 7753
i

Ре­ши­те не­ра­вен­ство 3 в сте­пе­ни x мень­ше 27 умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка .



25
Тип 25 № 8023
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 3, зна­ме­на­тель: 1 минус 4x конец дроби ,x_0=1.



26
Тип 26 № 4005
i
Развернуть

Най­ди­те пло­щадь по­верх­но­сти всех «угол­ков»



27
Тип 27 № 2417
i
Развернуть

Каков объем дач­но­го до­ми­ка? Ответ при­ве­ди­те в ку­би­че­ских мет­рах.



28
Тип 28 № 3398
i
Развернуть

Рас­счи­тать ко­ли­че­ство ка­мен­ной де­ко­ра­тив­ной шту­ка­тур­ки для вы­со­ко­ка­че­ствен­но­го ошту­ка­ту­ри­ва­ния бо­ко­вой по­верх­но­сти по­ста­мен­та. Рас­ход рас­тво­ра для де­ко­ра­тив­ной шту­ка­тур­ки 0,02 м3 на один квад­рат­ный метр. Ответ округ­ли­те до целых.



29
Тип 29 № 3399
i
Развернуть

Най­ди­те массу под­став­ки, если удель­ная плот­ность гра­ни­та 2,5 г/см3. Ответ вы­ра­зить в кг.



30
Тип 30 № 3400
i
Развернуть

Какой длины нужно по­ре­зать ко­ван­ную де­ко­ра­тив­ную ме­тал­ли­че­скую по­ло­су для за­креп­ле­ния ее от углов верх­не­го ос­но­ва­ния пер­пен­ди­ку­ляр­но реб­рам ниж­не­го ос­но­ва­ния. Ответ округ­ли­те до целых.



31
Тип 31 № 7716
i

Функ­ция за­да­на урав­не­ни­ем y = 4 ко­си­нус x плюс 2. Уста­но­ви­те со­от­вет­ствие между наи­боль­шим и наи­мень­шим зна­че­ни­я­ми функ­ции и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Наи­боль­шее зна­че­ние функ­ции

Б) Наи­мень­шее зна­че­ние функ­ции

1) 1

2) 3

3) −2

4) 6


Ответ:

32
Тип 32 № 7824
i

Две окруж­но­сти ра­ди­у­са­ми 2 и 3 ка­са­ют­ся внеш­ним об­ра­зом друг с дру­гом и внут­рен­ним об­ра­зом с окруж­но­стью ра­ди­у­са 15. Уста­но­ви­те со­от­вет­ствие между дли­ной боль­шей сто­ро­ны тре­уголь­ни­ка, об­ра­зо­ван­но­го цен­тра­ми окруж­но­стей, его ме­ди­а­ной, про­ве­ден­ной из вер­ши­ны боль­ше­го угла, и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Длина боль­шей сто­ро­ны тре­уголь­ни­ка

Б) Длина ме­ди­а­ны тре­уголь­ни­ка, про­ве­ден­ной из вер­ши­ны боль­ше­го угла

1) 12

2) 13

3) 6,5

4) 8


Ответ:

33
Тип 33 № 8203
i

Най­ди­те два на­ту­раль­ных числа a и b, от­но­ше­ние ко­то­рых равно 3, а от­но­ше­ние суммы их квад­ра­тов к их сумме равно 10. Уста­но­ви­те со­от­вет­ствия:

A) Число a при­над­ле­жит про­ме­жут­ку

Б) Число b при­над­ле­жит про­ме­жут­ку

1) [1; 3)

2) [3; 4]

3) (10; 12]

4) (6; 8)


Ответ:

34

Даны урав­не­ния  ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x в квад­ра­те плюс 2x плюс 1 пра­вая круг­лая скоб­ка = 0 и 2 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те минус 4x минус 8 пра­вая круг­лая скоб­ка = 16. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) 1, 2, 4

2) 0, 7, 1

3) 0, 6, −2

4) 6, 5, −2


Ответ:

35
Тип 35 № 7804
i

В ариф­ме­ти­че­ской про­грес­сии (an) вто­рой член равен 18, а раз­ность про­грес­сии d  =  2,4. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) a1

Б) S7

1) 15,6

2) 159,6

3) 13,2

4) 142,8


Ответ:

36
Тип 36 № 6969
i

Зна­че­ние вы­ра­же­ния 4 ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ко­рень из: на­ча­ло ар­гу­мен­та: 176 конец ар­гу­мен­та равно:



37
Тип 37 № 7791
i

Най­ди­те зна­че­ние вы­ра­же­ния  синус 120 гра­ду­сов ко­си­нус 315 гра­ду­сов тан­генс 150 гра­ду­сов \ctg300 гра­ду­сов .



38
Тип 38 № 8209
i

Сумма трех чисел, со­став­ля­ю­щих ариф­ме­ти­че­скую про­грес­сию, у ко­то­рой раз­ность боль­ше нуля, равна 18. Если к этим чис­лам при­ба­вить со­от­вет­ствен­но 4, 2 и 18, то по­лу­чен­ные числа со­став­ля­ют пер­вые три члена гео­мет­ри­че­ской про­грес­сии. Най­ди­те эти три числа.



39
Тип 39 № 8104
i

Ре­ши­те си­сте­му, при­во­ди­мую к со­дер­жа­щей од­но­род­ное урав­не­ние

 си­сте­ма вы­ра­же­ний новая стро­ка дробь: чис­ли­тель: x плюс y, зна­ме­на­тель: x минус y конец дроби плюс дробь: чис­ли­тель: x минус y, зна­ме­на­тель: x плюс y конец дроби = дробь: чис­ли­тель: 13, зна­ме­на­тель: 6 конец дроби , новая стро­ка xy=5. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния x_1y_1 плюс x_2y_2.



40
Тип 40 № 3925
i

В конус с вы­со­той 15 см и ра­ди­у­сом 10 см впи­сан ци­линдр с вы­со­той 12 см. Най­ди­те объём ци­лин­дра.


Завершить работу, свериться с ответами, увидеть решения.