Вариант № 27428

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 2120
i

Hай­ди­те сумму: 1 плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 конец дроби плюс ...



2
Тип 2 № 7867
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: a левая круг­лая скоб­ка b минус 3a пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: 3a в квад­ра­те минус ab конец дроби минус 3a при a=2,18, b= минус 5,6.



3
Тип 3 № 3271
i

Най­ди­те зна­че­ние вы­ра­же­ния:  синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби минус синус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби .



4
Тип 4 № 7880
i

При­ве­ди­те од­но­член 8a в квад­ра­те b в квад­ра­те a в сте­пе­ни 4 b к стан­дарт­но­му виду.



5
Тип 5 № 3413
i

Най­ди­те от­ри­ца­тель­ный ко­рень урав­не­ния 8|x| минус 5|x| минус 17=0.



6
Тип 6 № 2013
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 4x плюс дробь: чис­ли­тель: 9, зна­ме­на­тель: y конец дроби = 21,17 минус 3x = дробь: чис­ли­тель: 18, зна­ме­на­тель: y конец дроби . конец си­сте­мы .



7
Тип 7 № 4177
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка e в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка минус e в сте­пе­ни левая круг­лая скоб­ка минус 2x пра­вая круг­лая скоб­ка плюс 2e в сте­пе­ни левая круг­лая скоб­ка 3x минус 5 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx.



8
Тип 8 № 4101
i

Пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра равна 28 Пи , и его объем равен 28 Пи . Най­ди­те вы­со­ту ци­лин­дра.



9
Тип 9 № 2163
i

Най­ди­те целые ре­ше­ния си­сте­мы не­ра­венств:  си­сте­ма вы­ра­же­ний 2 левая круг­лая скоб­ка 3x плюс 2 пра­вая круг­лая скоб­ка боль­ше 5 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка ,7 левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка мень­ше 3 левая круг­лая скоб­ка 2x плюс 3 пра­вая круг­лая скоб­ка . конец си­сте­мы .



10
Тип 10 № 6945
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния  синус 4x= дробь: чис­ли­тель: ко­рень из 2 , зна­ме­на­тель: 2 конец дроби .



11
Тип 11 № 4194
i

Най­ди­те пер­во­об­раз­ную функ­ции \ левая квад­рат­ная скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка 2x в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка минус 3x в квад­ра­те пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 1;5 пра­вая круг­лая скоб­ка .



12
Тип 12 № 8182
i

Ре­ши­те не­ра­вен­ство:  дробь: чис­ли­тель: 7, зна­ме­на­тель: 2x минус 3 конец дроби мень­ше 0.



13
Тип 13 № 1949
i

Cто­ро­ны тре­уголь­ни­ка от­но­сят­ся как 3 : 5 : 7. Най­ди­те пе­ри­метр по­доб­но­го ему тре­уголь­ни­ка, в ко­то­ром сумма наи­боль­шей и наи­мень­шей сто­рон равна 36 см.



14
Тип 14 № 7916
i

Вы­чис­ли­те ин­те­грал  ин­те­грал пре­де­лы: от 0 до \tfrac Пи , 6 левая круг­лая скоб­ка синус 5x ко­си­нус 4x минус ко­си­нус 5x синус 4x пра­вая круг­лая скоб­ка dx



15
Тип 15 № 2720
i

Най­ди­те объём куба, если пло­щадь его пол­ной по­верх­но­сти равна 72 см2.



16
Тип 16 № 6958
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния 2x умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 30 конец ар­гу­мен­та =x в квад­ра­те плюс x плюс 30.



17
Тип 17 № 3691
i

Ре­ши­те си­сте­му не­ра­венств

 си­сте­ма вы­ра­же­ний 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка мень­ше левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 6 минус 8 x пра­вая круг­лая скоб­ка , левая круг­лая скоб­ка 0,2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те минус 4 x минус 12 пра­вая круг­лая скоб­ка боль­ше 1. конец си­сте­мы .



18
Тип 18 № 4150
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=x в квад­ра­те плюс 2x,y=x плюс 2.



19
Тип 19 № 7899
i

Сто­ро­ны па­рал­ле­ло­грам­ма равны 5 см и 6 см, а одна из диа­го­на­лей равна 7 см. Най­ди­те наи­мень­шую вы­со­ту па­рал­ле­ло­грам­ма.



20
Тип 20 № 3567
i

Най­ди­те пер­вый по­ло­жи­тель­ный член ариф­ме­ти­че­ской про­грес­сии: −20,3; −18,7; ...



21
Тип 21 № 7925
i

Даны век­то­ры \veca левая фи­гур­ная скоб­ка 4; 3 пра­вая фи­гур­ная скоб­ка , \vecb левая фи­гур­ная скоб­ка 8; минус 10 пра­вая фи­гур­ная скоб­ка , \vecc левая фи­гур­ная скоб­ка минус 4; дробь: чис­ли­тель: 23, зна­ме­на­тель: 3 конец дроби пра­вая фи­гур­ная скоб­ка . Раз­ло­жи­те век­тор \vecc по век­то­рам \veca и \vecb.



22
Тип 22 № 2116
i

Из­бавь­тесь от ир­ра­ци­о­наль­но­сти в зна­ме­на­те­ле:  дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: x минус y конец ар­гу­мен­та конец дроби .



23
Тип 23 № 8010
i

Ре­ши­те урав­не­ние  де­ся­тич­ный ло­га­рифм левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка = де­ся­тич­ный ло­га­рифм дробь: чис­ли­тель: x плюс 2, зна­ме­на­тель: x минус 3 конец дроби .



24
Тип 24 № 7752
i

Ре­ши­те не­ра­вен­ство 2 в сте­пе­ни x плюс 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка боль­ше или равно 144.



25
Тип 25 № 8021
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =2 ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та минус 5,x_0=1.



26
Тип 26 № 2416
i
Развернуть

Ка­ко­ва пло­щадь пола дач­но­го до­ми­ка?



27
Тип 27 № 3222
i
Развернуть

Чему равен пе­ри­метр по­тол­ка в ком­на­те?



28
Тип 28 № 3468
i
Развернуть

Сколь­ки­ми спо­со­ба­ми Ма­ди­на может вы­брать в ма­га­зи­не из дан­ных то­ва­ров ком­плект из двух раз­ных пред­ме­тов?



29
Тип 29 № 8159
i
Развернуть

Сколь­ко нужно ленты, чтобы об­вить края кол­па­ка, если π ≈ 3?



30
Тип 30 № 2420
i
Развернуть

Рас­счи­тай­те наи­мень­шую пло­щадь от­хо­дов от сте­но­вых па­не­лей, остав­ших­ся после стро­и­тель­ства в квад­рат­ных мет­рах, с уче­том двух окон и двери.



31
Тип 31 № 7729
i

Квад­ра­тич­ная функ­ция за­да­на урав­не­ни­ем y = минус x в квад­ра­те плюс 2x плюс 3. Уста­но­ви­те со­от­вет­ствие между ну­ля­ми функ­ции и ко­ор­ди­на­та­ми вер­ши­ны па­ра­бо­лы.

A)  Нули функ­ции

Б)  Ко­ор­ди­на­ты вер­ши­ны па­ра­бо­лы

1)  (1; 4)

2)  {−1; 3}

3)  (−2; −1)

4)  {1; 3}


Ответ:

32
Тип 32 № 8202
i

Рав­но­бед­рен­ная тра­пе­ция опи­са­на около окруж­но­сти, ра­ди­ус ко­то­рой равен 14. Бо­ко­вая сто­ро­ны тра­пе­ции равна 30. Уста­но­ви­те со­от­вет­ствия:

A) Сред­няя линия тра­пе­ции

Б) Вы­со­та тра­пе­ции

1) 28

2) 25

3) 24

4) 30


Ответ:

33
Тип 33 № 7757
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  дробь: чис­ли­тель: левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка в кубе левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x в квад­ра­те плюс 2x плюс 1 конец дроби . Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x, сум­мой ко­эф­фи­ци­ен­тов мно­го­чле­на и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x

Б) Сумма ко­эф­фи­ци­ен­тов мно­го­чле­на

1) (15; 20)

2) (7; 11)

3) (20; 25)

4) (2; 5)


Ответ:

34
Тип 34 № 7777
i

Даны урав­не­ния  ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x в квад­ра­те минус 8x пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию 2 4 и  дробь: чис­ли­тель: x в квад­ра­те минус 15x плюс 54, зна­ме­на­тель: x минус 6 конец дроби = 0. Уста­но­ви­те со­от­вет­ствия:

A) Число яв­ля­ет­ся кор­нем пер­во­го урав­не­ния, но не яв­ля­ет­ся кор­нем вто­ро­го урав­не­ния

Б) Число яв­ля­ет­ся кор­нем обоих урав­не­ний

1) 3

2) 2

3) −1

4) 9


Ответ:

35
Тип 35 № 8206
i

Дана гео­мет­ри­че­ская про­грес­сия (bn), где b2  =  8 и b5  =  512. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем

A) S5

Б) 10 умно­жить на b_3

1) 682

2) 80

3) 674

4) 320


Ответ:

36
Тип 36 № 3921
i

Если

 S = дробь: чис­ли­тель: 0,536 в квад­ра­те минус 0,464 в квад­ра­те , зна­ме­на­тель: 3,6 в квад­ра­те минус 7,2 умно­жить на 2,4 плюс 2,4 в квад­ра­те конец дроби

то верны сле­ду­ю­щие утвер­жде­ния.



37
Тип 37 № 7786
i

Най­ди­те зна­че­ние вы­ра­же­ния  синус 81 гра­ду­сов синус 51 гра­ду­сов плюс синус 9 гра­ду­сов синус 39 гра­ду­сов .



38
Тип 38 № 3234
i

Знаем, что (an) — ариф­ме­ти­че­ская про­грес­сия, седь­мой член, ко­то­рой равен 5, тогда сумма три­на­дца­ти пер­вых чле­нов этой про­грес­сии равна



39
Тип 39 № 8112
i

Ре­ши­те си­сте­му ра­ци­о­наль­ных урав­не­ний

 си­сте­ма вы­ра­же­ний новая стро­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: x минус y конец дроби минус дробь: чис­ли­тель: 1, зна­ме­на­тель: x плюс y конец дроби =1, новая стро­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: x плюс y конец дроби минус дробь: чис­ли­тель: 1, зна­ме­на­тель: x минус y конец дроби =4. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния 2x плюс 3y.



40
Тип 40 № 3555
i

Из ко­ну­са вы­ре­за­ли шар наи­боль­ше­го объёма. Най­ди­те от­но­ше­ние объёма сре­зан­ной части ко­ну­са к объёму шара, если осе­вое се­че­ние ко­ну­са — рав­но­сто­рон­ний тре­уголь­ник.


Завершить работу, свериться с ответами, увидеть решения.