Вариант № 25350

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 2120
i

Hай­ди­те сумму: 1 плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 конец дроби плюс ...



2
Тип 2 № 7861
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: 2c минус 4, зна­ме­на­тель: cd минус 2d конец дроби   и най­ди­те его зна­че­ние при c=0,5; d=5.



3
Тип 3 № 6933
i

Най­ди­те зна­че­ние вы­ра­же­ния 24 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ко­си­нус левая круг­лая скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка синус левая круг­лая скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка .



4
Тип 4 № 7874
i

Раз­ло­жи­те квад­рат­ный трех­член 2x в квад­ра­те плюс 8x плюс 6 на мно­жи­те­ли.



5
Тип 5 № 2117
i

Ука­жи­те урав­не­ние, не яв­ля­ю­ще­е­ся ли­ней­ным урав­не­ни­ем с двумя пе­ре­мен­ны­ми.



6
Тип 6 № 3806
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 2x плюс 3y=16,7x минус 5y=25. конец си­сте­мы .



7
Тип 7 № 4188
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка 2 ко­си­нус 2x минус 3 синус 3x пра­вая круг­лая скоб­ка dx.



8
Тип 8 № 8185
i

Об­ра­зу­ю­щая ко­ну­са равна 6 и со­став­ля­ет с плос­ко­стью ос­но­ва­ния угол 30°. Най­ди­те пло­щадь ос­но­ва­ния ко­ну­са.



9
Тип 9 № 3429
i

Pешите си­сте­му не­ра­венств

 си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x в квад­ра­те минус 2 x плюс 1 конец дроби боль­ше или равно 0, дробь: чис­ли­тель: x в квад­ра­те минус 2 x минус 3, зна­ме­на­тель: левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те конец дроби мень­ше или равно 0. конец си­сте­мы .



10
Тип 10 № 1945
i

Ре­ши­те урав­не­ние  синус в квад­ра­те x минус 17 синус x плюс 16 = 0 и най­ди­те его корни на x при­над­ле­жит левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .



11
Тип 11 № 4197
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =7x в кубе минус x плюс 3, про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 1;6 пра­вая круг­лая скоб­ка .



12
Тип 12 № 2121
i

Oпре­де­ли­те длину про­ме­жут­ка, со­от­вет­ству­ю­ще­го ре­ше­нию не­ра­вен­ства:  дробь: чис­ли­тель: левая круг­лая скоб­ка x в кубе минус 64 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в кубе плюс 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: минус 1 минус x в квад­ра­те конец дроби боль­ше или равно 0.



13
Тип 13 № 1943
i

В тре­уголь­ни­ке ACB AC  =  6, MN  =  4, AB  =  4,8, MN || AB. Най­ди­те MC.



14
Тип 14 № 2718
i

Вы­чис­ли­те ин­те­грал:  ин­те­грал пре­де­лы: от минус 5 до 1, левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те dx .



15
Тип 15 № 2720
i

Най­ди­те объём куба, если пло­щадь его пол­ной по­верх­но­сти равна 72 см2.



16
Тип 16 № 1951
i

Ре­ши­те урав­не­ние 2 в сте­пе­ни левая круг­лая скоб­ка 4x пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка 3x пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 4 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка минус 1.



17
Тип 17 № 3691
i

Ре­ши­те си­сте­му не­ра­венств

 си­сте­ма вы­ра­же­ний 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка мень­ше левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 6 минус 8 x пра­вая круг­лая скоб­ка , левая круг­лая скоб­ка 0,2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те минус 4 x минус 12 пра­вая круг­лая скоб­ка боль­ше 1. конец си­сте­мы .



18
Тип 18 № 8005
i

Пло­щадь фи­гу­ры, огра­ни­чен­ной гра­фи­ка­ми функ­ций y=x в квад­ра­те минус 1 и y=x плюс 1 равна



19
Тип 19 № 7914
i

Пра­виль­ный n-уголь­ник впи­сан в окруж­ность. Её ра­ди­ус со­став­ля­ет с одной из сто­рон n-уголь­ни­ка угол 54°. Най­ди­те n.



20
Тип 20 № 2437
i

Вы­чис­ли­те сумму бес­ко­неч­но убы­ва­ю­щей гео­мет­ри­че­ской про­грес­сии: 0,6; 0,06; 0,006,...



21
Тип 21 № 7974
i

Най­ди­те угол между век­то­ра­ми \veca и \vecb, если:

а)  \veca= левая круг­лая скоб­ка 2;3 пра­вая круг­лая скоб­ка и \vecb= левая круг­лая скоб­ка 2;4 пра­вая круг­лая скоб­ка ; б) \veca= левая круг­лая скоб­ка 0;1 пра­вая круг­лая скоб­ка и \vecb= левая круг­лая скоб­ка 2;0 пра­вая круг­лая скоб­ка ;

в)  \veca= левая круг­лая скоб­ка 1; ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та пра­вая круг­лая скоб­ка и \vecb= левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ;1 пра­вая круг­лая скоб­ка ; г) \veca= левая круг­лая скоб­ка 6;4 пра­вая круг­лая скоб­ка и \vecb= левая круг­лая скоб­ка 2; минус 3 пра­вая круг­лая скоб­ка .



22
Тип 22 № 2201
i

Вы­чис­ли­те:  дробь: чис­ли­тель: 72 в сте­пе­ни левая круг­лая скоб­ка 2k плюс 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 6 в сте­пе­ни левая круг­лая скоб­ка 6k пра­вая круг­лая скоб­ка умно­жить на 9 в сте­пе­ни левая круг­лая скоб­ка 1 минус k пра­вая круг­лая скоб­ка конец дроби .



23
Тип 23 № 8011
i

Ре­ши­те урав­не­ние \log _5 левая круг­лая скоб­ка x минус 8 пра­вая круг­лая скоб­ка в квад­ра­те =2 плюс 2\log _5 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка .



24
Тип 24 № 7744
i

Ре­ши­те не­ра­вен­ство \log _3 левая круг­лая скоб­ка x в квад­ра­те минус 8x пра­вая круг­лая скоб­ка боль­ше или равно 2.



25
Тип 25 № 8017
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x в кубе минус x в квад­ра­те плюс x,x_0= минус 1.



26
Тип 26 № 3970
i
Развернуть

Пло­щадь до­ро­ги равна



27
Тип 27 № 3222
i
Развернуть

Чему равен пе­ри­метр по­тол­ка в ком­на­те?



28
Тип 28 № 3363
i
Развернуть

Сколь­ки­ми спо­со­ба­ми может вы­пасть в сумме число 5?



29
Тип 29 № 3364
i
Развернуть

Сколь­ки­ми спо­со­ба­ми может вы­пасть в сумме чет­ное число?



30
Тип 30 № 3225
i
Развернуть

Kакова сто­и­мость ре­мон­та стен в ком­на­те, если учесть, что в ком­на­те 2 окна с раз­ме­ра­ми 2 м на 1,5 м и двери вы­со­той 2 м и ши­ри­ной 1 м?



31
Тип 31 № 7707
i

Квад­ра­тич­ная функ­ция за­да­на урав­не­ни­ем y = x в квад­ра­те минус 1. Уста­но­ви­те со­от­вет­ствие между ну­ля­ми функ­ции и ко­ор­ди­на­та­ми вер­ши­ны па­ра­бо­лы.

A)  Нули функ­ции

Б)  Ко­ор­ди­на­ты вер­ши­ны па­ра­бо­лы

1)  (1; 1)

2)  {−1; 1}

3)  {2; 0}

4)  (0; −1)


Ответ:

32
Тип 32 № 7839
i

Ци­линдр, осе­вым се­че­ни­ем ко­то­ро­го яв­ля­ет­ся квад­рат, впи­сан в шар, ра­ди­ус ко­то­ро­го равен 4. Уста­но­ви­те со­от­вет­ствие между вы­со­той ци­лин­дра, его объ­е­мом и чис­ло­вы­ми про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их зна­че­ния.

A) Вы­со­та ци­лин­дра

Б) Объем ци­лин­дра

1) [176; 188)

2) (3; 5)

3) (5; 6)

4) (158; 161]


Ответ:

33
Тип 33 № 7762
i

Най­ди­те два на­ту­раль­ных числа x и y, x > y, если из­вест­но, что сумма чисел x и y равна 7, а про­из­ве­де­ние этих чисел равно 12.

A) Число x при­над­ле­жит про­ме­жут­ку

Б) Число y при­над­ле­жит про­ме­жут­ку

1) [4; 5]

2) (1; 3]

3) (5; 6]

4) (0; 2)


Ответ:

34
Тип 34 № 7770
i

Даны урав­не­ния x в квад­ра­те плюс 8x минус 9 = 0 и 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка = 32. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) −9, 3, 1

2) −1, 0, 2

3) −9, 4, 1

4) 7, 8, 9


Ответ:

35
Тип 35 № 7812
i

У гео­мет­ри­че­ской про­грес­сии  левая круг­лая скоб­ка b_n пра­вая круг­лая скоб­ка из­вест­но, что  b_1=2, q= минус 2. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) b5

Б) S5

1) 32

2) 16

3) 11

4) 22


Ответ:

36
Тип 36 № 3229
i

Oдно из двух на­ту­раль­ных чисел боль­ше дру­го­го на 13. Най­ди­те эти числа, если их про­из­ве­де­ние равно 48.



37
Тип 37 № 7776
i

Зна­че­ние вы­ра­же­ния  синус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс альфа пра­вая круг­лая скоб­ка минус ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби минус альфа пра­вая круг­лая скоб­ка равно



38
Тип 38 № 3835
i

Дана по­сле­до­ва­тель­ность на­ту­раль­ных чисел, мень­ших 170, да­ю­щих оста­ток 1 при де­ле­нии на 19. Вы­бе­ри­те вер­ные утвер­жде­ния.



39
Тип 39 № 2423
i

Най­ди­те от­но­ше­ние  дробь: чис­ли­тель: x, зна­ме­на­тель: y конец дроби , где (x; y) — ре­ше­ние си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний 3 в сте­пе­ни x умно­жить на 3 в сте­пе­ни y = 27,10 в сте­пе­ни левая круг­лая скоб­ка \lg левая круг­лая скоб­ка x минус y пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка =5. конец си­сте­мы .



40
Тип 40 № 3305
i

Через вер­ши­ну остро­го угла пря­мо­уголь­но­го тре­уголь­ни­ка ABC с пря­мым углом C про­ве­де­на пря­мая AD, пер­пен­ди­ку­ляр­ная плос­ко­сти тре­уголь­ни­ка. Най­ди­те рас­сто­я­ние от точки D до вер­ши­ны B, если AC = 8, BC = 9 и AD = 10.


Завершить работу, свериться с ответами, увидеть решения.