Вариант № 25349

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 3208
i

За­пи­ши­те в виде обык­но­вен­ной дроби бес­ко­неч­ную пе­ри­о­ди­че­скую де­ся­тич­ную дробь 21,00(12).



2

3
Тип 3 № 6924
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 12 конец ар­гу­мен­та синус в квад­ра­те дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби .



4
Тип 4 № 7881
i

При­ве­ди­те од­но­член a в квад­ра­те b в сте­пе­ни 7 a в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка b в сте­пе­ни 5 к стан­дарт­но­му виду.



5
Тип 5 № 3344
i

Чис­ли­тель дроби на 4 мень­ше ее зна­ме­на­те­ля. Если эту дробь сло­жить с об­рат­ной ей дро­бью, то по­лу­чит­ся число  дробь: чис­ли­тель: 106, зна­ме­на­тель: 45 конец дроби . Най­ди­те ис­ход­ную дробь.



6
Тип 6 № 1941
i

Най­ди­те число А, если A = x умно­жить на y, где (x; y) яв­ля­ет­ся ре­ше­ни­ем си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний x в квад­ра­те y = 9,xy в квад­ра­те = 3. конец си­сте­мы .



7
Тип 7 № 4172
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс x в кубе плюс x минус 3, зна­ме­на­тель: x в квад­ра­те плюс 1 конец дроби dx.



8
Тип 8 № 4101
i

Пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра равна 28 Пи , и его объем равен 28 Пи . Най­ди­те вы­со­ту ци­лин­дра.



9
Тип 9 № 2163
i

Най­ди­те целые ре­ше­ния си­сте­мы не­ра­венств:  си­сте­ма вы­ра­же­ний 2 левая круг­лая скоб­ка 3x плюс 2 пра­вая круг­лая скоб­ка боль­ше 5 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка ,7 левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка мень­ше 3 левая круг­лая скоб­ка 2x плюс 3 пра­вая круг­лая скоб­ка . конец си­сте­мы .



10
Тип 10 № 6949
i

Ре­ши­те урав­не­ние  ко­си­нус левая круг­лая скоб­ка 3x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .



11
Тип 11 № 4195
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка 4x в кубе минус 3x в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка 3;4 пра­вая круг­лая скоб­ка .



12
Тип 12 № 3380
i

Ре­ши­те не­ра­вен­ство:  дробь: чис­ли­тель: 3x плюс 9, зна­ме­на­тель: 3 минус x конец дроби боль­ше или равно 0.



13
Тип 13 № 3571
i

По дан­ным ри­сун­ка най­ди­те зна­че­ние x.



14
Тип 14 № 7916
i

Вы­чис­ли­те ин­те­грал  ин­те­грал пре­де­лы: от 0 до \tfrac Пи , 6 левая круг­лая скоб­ка синус 5x ко­си­нус 4x минус ко­си­нус 5x синус 4x пра­вая круг­лая скоб­ка dx



15
Тип 15 № 3430
i

B еди­нич­ном кубе най­ди­те рас­сто­я­ние от вер­ши­ны В до плос­ко­сти (АСВ1).



16
Тип 16 № 6959
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те плюс 3x конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: 1 минус x конец ар­гу­мен­та = ко­рень из: на­ча­ло ар­гу­мен­та: 12 минус x конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: 1 минус x конец ар­гу­мен­та .



17
Тип 17 № 2239
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: x плюс 1, зна­ме­на­тель: ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка конец дроби боль­ше 0, ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 11 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те плюс 7 пра­вая круг­лая скоб­ка мень­ше ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 11 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 6x минус 1 пра­вая круг­лая скоб­ка . конец си­сте­мы .



18
Тип 18 № 7906
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной па­ра­бо­ла­ми: y= левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те ,y= минус левая круг­лая скоб­ка 2 минус x пра­вая круг­лая скоб­ка в квад­ра­те , минус 2 мень­ше или равно x мень­ше или равно 2.



19
Тип 19 № 2480
i

Внут­рен­ний угол пра­виль­но­го мно­го­уголь­ни­ка равен 172°. Ко­ли­че­ство сто­рон дан­но­го мно­го­уголь­ни­ка равно



20
Тип 20 № 8190
i

Ариф­ме­ти­че­ская про­грес­сия 5, 8, 11... и гео­мет­ри­че­ская про­грес­сия 4, 8, 16... имеют по 50 чле­нов. Сколь­ко оди­на­ко­вых чле­нов в обеих про­грес­си­ях?



21
Тип 21 № 7965
i

Век­тор \overrightarrowAB с на­ча­лом в точке A(2; –4) имеет ко­ор­ди­на­ты (6; –5). Най­ди­те ко­ор­ди­на­ты точки B.



22
Тип 22 № 3749
i

Упро­сти­те:  дробь: чис­ли­тель: синус 3 альфа , зна­ме­на­тель: синус альфа конец дроби минус дробь: чис­ли­тель: ко­си­нус 3 альфа , зна­ме­на­тель: ко­си­нус альфа конец дроби .



23
Тип 23 № 8009
i

Ре­ши­те урав­не­ние \log _5 дробь: чис­ли­тель: 2 плюс x, зна­ме­на­тель: 10 конец дроби =\log _5 дробь: чис­ли­тель: 2, зна­ме­на­тель: x плюс 1 конец дроби .



24
Тип 24 № 7747
i

Ре­ши­те про­стей­шее три­го­но­мет­ри­че­ское не­ра­вен­ство  тан­генс x боль­ше 1.



25
Тип 25 № 8021
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =2 ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та минус 5,x_0=1.



26
Тип 26 № 2556
i
Развернуть

Опре­де­ли­те объем вы­бор­ки.



27
Тип 27 № 3755
i
Развернуть

Пред­при­я­тию тре­бу­ет­ся 3 про­грам­ми­ста. Ука­жи­те ко­ли­че­ство спо­со­бов, ко­то­ры­ми их можно вы­брать.



28
Тип 28 № 3468
i
Развернуть

Сколь­ки­ми спо­со­ба­ми Ма­ди­на может вы­брать в ма­га­зи­не из дан­ных то­ва­ров ком­плект из двух раз­ных пред­ме­тов?



29
Тип 29 № 2244
i
Развернуть

Опре­де­ли­те угол между пря­мой AD1 и плос­ко­стью ABCDEF.



30
Тип 30 № 2420
i
Развернуть

Рас­счи­тай­те наи­мень­шую пло­щадь от­хо­дов от сте­но­вых па­не­лей, остав­ших­ся после стро­и­тель­ства в квад­рат­ных мет­рах, с уче­том двух окон и двери.



31
Тип 31 № 7715
i

Функ­ция за­да­на урав­не­ни­ем y = ко­си­нус x минус 4. Уста­но­ви­те со­от­вет­ствие между наи­боль­шим и наи­мень­шим зна­че­ни­я­ми функ­ции и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Наи­боль­шее зна­че­ние функ­ции

Б) Наи­мень­шее зна­че­ние функ­ции

1) −3

2) −5

3) −1

4) 3


Ответ:

32
Тип 32 № 7823
i

Три окруж­но­сти ра­ди­у­са­ми 2 каж­дая по­пар­но ка­са­ют­ся внеш­ним об­ра­зом. Уста­но­ви­те со­от­вет­ствие между дли­ной сто­ро­ны тре­уголь­ни­ка, об­ра­зо­ван­но­го цен­тра­ми окруж­но­стей, его пло­ща­дью и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Длина сто­ро­ны тре­уголь­ни­ка

Б) Пло­щадь тре­уголь­ни­ка

1) 4 ко­рень из 3

2) 2

3) 16

4) 4


Ответ:

33
Тип 33 № 7735
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 4 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те . Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x3, сум­мой ко­эф­фи­ци­ен­тов мно­го­чле­на и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x3

Б) Сумма ко­эф­фи­ци­ен­тов мно­го­чле­на

1) (30; 60)

2) (8; 12]

3) [70; 90]

4) [4; 9)


Ответ:

34
Тип 34 № 7778
i

Даны урав­не­ния x в квад­ра­те минус 11x плюс 24 = 0 и  левая круг­лая скоб­ка 0,25 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2 минус x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 128, зна­ме­на­тель: 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка конец дроби . Уста­но­ви­те со­от­вет­ствия:

A) Число яв­ля­ет­ся кор­нем пер­во­го урав­не­ния, но не яв­ля­ет­ся кор­нем вто­ро­го урав­не­ния

Б) Число яв­ля­ет­ся кор­нем обоих урав­не­ний

1) 2

2) 8

3) 1

4) 3


Ответ:

35
Тип 35 № 7819
i

Вы­пи­са­но не­сколь­ко пер­вых чле­нов гео­мет­ри­че­ской про­грес­сии: −1024; −256; −64; … Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) b5

Б) S5

1) 4

2) −4

3) −1362

4) −1364


Ответ:

36
Тип 36 № 3759
i

Ука­жи­те вы­ра­же­ния, зна­че­ния ко­то­рых чис­лен­но равны  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .



37
Тип 37 № 7789
i

Най­ди­те зна­че­ние вы­ра­же­ния  тан­генс 225 гра­ду­сов ко­си­нус 330 гра­ду­сов \ctg120 гра­ду­сов синус 240 гра­ду­сов .



38
Тип 38 № 3234
i

Знаем, что (an) — ариф­ме­ти­че­ская про­грес­сия, седь­мой член, ко­то­рой равен 5, тогда сумма три­на­дца­ти пер­вых чле­нов этой про­грес­сии равна



39
Тип 39 № 8094
i

Ре­ши­те си­сте­му

 си­сте­ма вы­ра­же­ний новая стро­ка 9 умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс 7 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка =457, новая стро­ка 6 умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус 14 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка = минус 890. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния 2x плюс y.



40
Тип 40 № 3925
i

В конус с вы­со­той 15 см и ра­ди­у­сом 10 см впи­сан ци­линдр с вы­со­той 12 см. Най­ди­те объём ци­лин­дра.


Завершить работу, свериться с ответами, увидеть решения.