Вариант № 23901

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 7854
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: минус 7 конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 32 конец ар­гу­мен­та умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 49 конец ар­гу­мен­та минус 7 дробь: чис­ли­тель: ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 64 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: минус 2 конец ар­гу­мен­та конец дроби .



2
Тип 2 № 7864
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: левая круг­лая скоб­ка a минус 2b пра­вая круг­лая скоб­ка в квад­ра­те минус 4b в квад­ра­те , зна­ме­на­тель: a конец дроби   и най­ди­те его зна­че­ние при a=0,3; b= минус 0,35.



3
Тип 3 № 2617
i

Най­ди­те зна­че­ние вы­ра­же­ния:

 тан­генс в квад­ра­те дробь: чис­ли­тель: 4 Пи , зна­ме­на­тель: 3 конец дроби синус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби минус 2 ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс \ctg дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби .



4
Тип 4 № 3810
i

Упро­сти­те вы­ра­же­ние и за­пи­ши­те в стан­дарт­ном виде:  левая круг­лая скоб­ка a плюс 5 пра­вая круг­лая скоб­ка в квад­ра­те минус 5a левая круг­лая скоб­ка 2 минус a пра­вая круг­лая скоб­ка .



5
Тип 5 № 2467
i

Из дан­ных пар чисел ука­жи­те ту, ко­то­рая яв­ля­ет­ся ре­ше­ни­ем урав­не­ния 6x минус 5y плюс 12 = 0.



6
Тип 6 № 6938
i

Ре­ши­те си­сте­му урав­не­ний

 си­сте­ма вы­ра­же­ний 2y=5x,x плюс y=14. конец си­сте­мы .

Для по­лу­чен­но­го ре­ше­ния (x0; у0) ука­жи­те про­из­ве­де­ние x0 · y0.



7
Тип 7 № 4188
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка 2 ко­си­нус 2x минус 3 синус 3x пра­вая круг­лая скоб­ка dx.



8
Тип 8 № 3290
i

Опре­де­ли­те длину диа­го­на­ли осе­во­го се­че­ния ци­лин­дра с ра­ди­у­сом 5 см и вы­со­той 24 см.



9
Тип 9 № 1993
i

Най­ди­те сумму целых ре­ше­ний си­сте­мы не­ра­венств:  си­сте­ма вы­ра­же­ний ко­си­нус Пи умно­жить на x в квад­ра­те плюс 2x плюс 3 боль­ше или равно 0,x минус 2 мень­ше 0 конец си­сте­мы .



10
Тип 10 № 6951
i

Ре­ши­те урав­не­ние:  синус x ко­си­нус x= дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .



11
Тип 11 № 4197
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =7x в кубе минус x плюс 3, про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 1;6 пра­вая круг­лая скоб­ка .



12
Тип 12 № 2470
i

Ре­ши­те не­ра­вен­ство: |x плюс 5| мень­ше или равно 7.



13
Тип 13 № 3204
i

Bыра­зи­те в ра­ди­а­нах ве­ли­чи­ну внут­рен­не­го угла пра­виль­но­го тре­уголь­ни­ка.



14
Тип 14 № 2124
i

Bычис­ли­те ин­те­грал:  при­над­ле­жит t_ минус 5 в сте­пе­ни левая круг­лая скоб­ка 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те d x.



15
Тип 15 № 1984
i

Ящик в форме пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да имеет квад­рат­ное дно. Вы­со­та ящика 80 см. Диа­го­наль бо­ко­вой грани равна 1 м, тогда сто­ро­на ос­но­ва­ния ящика равна



16
Тип 16 № 3272
i

Ре­ши­те урав­не­ние:  ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та =2.



17
Тип 17 № 1953
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 5 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 5 левая круг­лая скоб­ка 1 минус x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка мень­ше 3, ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 22 плюс 3 в сте­пе­ни x пра­вая круг­лая скоб­ка боль­ше минус 2. конец си­сте­мы .



18
Тип 18 № 7906
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной па­ра­бо­ла­ми: y= левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те ,y= минус левая круг­лая скоб­ка 2 минус x пра­вая круг­лая скоб­ка в квад­ра­те , минус 2 мень­ше или равно x мень­ше или равно 2.



19
Тип 19 № 2480
i

Внут­рен­ний угол пра­виль­но­го мно­го­уголь­ни­ка равен 172°. Ко­ли­че­ство сто­рон дан­но­го мно­го­уголь­ни­ка равно



20
Тип 20 № 2021
i

Чис­ло­вая по­сле­до­ва­тель­ность за­да­на усло­ви­я­ми x_n плюс 1 = x_n минус 2, x_1 = 3. Какое из ука­зан­ных чисел равно x3?



21
Тип 21 № 7929
i

Даны век­то­ры \veca левая круг­лая скоб­ка 5; 3 пра­вая круг­лая скоб­ка ,  \vecb левая круг­лая скоб­ка 4; минус 1 пра­вая круг­лая скоб­ка . Най­ди­те мо­дуль раз­но­сти век­то­ров \vecp и \vecq, если  \vecp=\veca плюс \vecb и  \vecq=\veca минус \vecb.



22
Тип 22 № 2126
i

Упро­сти­те:  левая круг­лая скоб­ка a b в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка плюс b a в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка a b пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .



23
Тип 23 № 8186
i

Ре­ши­те урав­не­ние:  ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка = 2.



24
Тип 24 № 7754
i

Ре­ши­те не­ра­вен­ство  ко­рень из: на­ча­ло ар­гу­мен­та: 6x минус 5 конец ар­гу­мен­та боль­ше минус ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та .



25
Тип 25 № 8020
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та ,x_0=4.



26
Тип 26 № 2136
i
Развернуть

Най­ди­те пе­ри­метр ос­но­ва­ния дач­но­го до­ми­ка.



27
Тип 27 № 3467
i
Развернуть

Сколь­ки­ми спо­со­ба­ми Ма­ди­на может вы­брать в ма­га­зи­не ком­плект «чашка+блюд­це»?



28
Тип 28 № 8158
i
Развернуть

На сколь­ко умень­шит­ся бо­ко­вая по­верх­ность кол­па­ка, если вы­со­ту умень­шить на 9 см, а ра­ди­ус ос­но­ва­ния уве­ли­чить на 1 см?



29
Тип 29 № 2139
i
Развернуть

Eсли уве­ли­чить ши­ри­ну ос­но­ва­ния дач­но­го до­ми­ка на 3 м, а его длину на 4 м, то во сколь­ко раз уве­ли­чит­ся пло­щадь ос­но­ва­ния дач­но­го до­ми­ка.



30
Тип 30 № 3470
i
Развернуть

Ма­ди­на ку­пи­ла ком­плект из 5 чашек: 3 из них се­реб­ря­ные, 2 про­стые; 8 блюд­цев: 5 се­реб­ря­ных, 3 про­стых; 7 ложек: 5 се­реб­ря­ных, 2 про­стых. Сколь­ки­ми спо­со­ба­ми Ма­ди­на может вы­брать ком­плект пред­ме­тов, со­сто­я­щих из двух се­реб­ря­ных чашек, трех се­реб­ря­ных блюд­цев и одной про­стой ложки.



31
Тип 31 № 7711
i

Квад­ра­тич­ная функ­ция за­да­на урав­не­ни­ем y = x в квад­ра­те плюс 4x минус 5. Уста­но­ви­те со­от­вет­ствие между ну­ля­ми функ­ции и ко­ор­ди­на­та­ми вер­ши­ны па­ра­бо­лы.

A)  Нули функ­ции

Б)  Ко­ор­ди­на­ты вер­ши­ны па­ра­бо­лы

1)  (−2; −9)

2)  {−5; 1}

3)  {1; 5}

4)  (4; −5)


Ответ:

32
Тип 32 № 7835
i

В пря­мую приз­му, в ос­но­ва­нии ко­то­рой лежит тре­уголь­ник со сто­ро­на­ми 3, 4, 5, впи­сан шар. Уста­но­ви­те со­от­вет­ствие между вы­со­той приз­мы, объ­е­мом приз­мы и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Вы­со­та приз­мы

Б) Объем приз­мы

1) 2

2) 4

3) 6

4) 12


Ответ:

33
Тип 33 № 7733
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка в кубе левая круг­лая скоб­ка 2x плюс 4 пра­вая круг­лая скоб­ка . Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x, сум­мой ко­эф­фи­ци­ен­тов мно­го­чле­на и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x

Б) Сумма ко­эф­фи­ци­ен­тов мно­го­чле­на

1) (−1; 1)

2) (0; 3)

3) [7; 12)

4) [−4; 0)


Ответ:

34
Тип 34 № 7790
i

Даны урав­не­ния  дробь: чис­ли­тель: x минус 4, зна­ме­на­тель: x минус 6 конец дроби = 2 и x в квад­ра­те минус x минус 6=0. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) −2, 3, 8

2) −2, 8, 1

3) −3, 5, 1

4) 3, −1, 8


Ответ:

35
Тип 35 № 7808
i

Ариф­ме­ти­че­ская про­грес­сия (an) за­да­ет­ся фор­му­лой n⁠-⁠го члена: a_n=2,6n минус 7. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) a7

Б) a_4 минус a_1

1) 5,2

2) 11,2

3) 7,8

4) 10,4


Ответ:

36
Тип 36 № 8043
i

Упро­сти­те вы­ра­же­ние 5 левая круг­лая скоб­ка 2m плюс 5n пра­вая круг­лая скоб­ка минус 3 левая круг­лая скоб­ка 5n минус 3m пра­вая круг­лая скоб­ка .



37
Тип 37 № 7802
i

Зна­че­ние вы­ра­же­ния 12 синус дробь: чис­ли­тель: 9 Пи , зна­ме­на­тель: 8 конец дроби ко­си­нус дробь: чис­ли­тель: 9 Пи , зна­ме­на­тель: 8 конец дроби равно



38
Тип 38 № 8045
i

Если в ариф­ме­ти­че­ской про­грес­сии a_3=4 и a_5=12, то вы­чис­ли­те сумму пер­во­го члена и раз­но­сти этой про­грес­сии



39
Тип 39 № 8111
i

Ре­ши­те си­сте­му урав­не­ний:

 си­сте­ма вы­ра­же­ний новая стро­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 2x минус y конец дроби плюс дробь: чис­ли­тель: 3, зна­ме­на­тель: x минус 2y конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби , новая стро­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 2x минус y конец дроби минус дробь: чис­ли­тель: 1, зна­ме­на­тель: x минус 2y конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 18 конец дроби . конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния x умно­жить на y.



40
Тип 40 № 2185
i

Вы­бе­ри­те из ни­же­пе­ре­чис­лен­ных от­ве­тов де­ли­те­ли числа, рав­но­го зна­че­нию пло­ща­ди бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной приз­мы, опи­сан­ной около ци­лин­дра, ра­ди­ус ос­но­ва­ния ко­то­ро­го равен  ко­рень из 3 , а вы­со­та равна 3.


Завершить работу, свериться с ответами, увидеть решения.