Вариант № 22953

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 7847
i

Упро­сти­те чис­ло­вое вы­ра­же­ние  ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 6 минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та конец ар­гу­мен­та умно­жить на ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 6 плюс 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та конец ар­гу­мен­та .



2

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 16x минус 25y, зна­ме­на­тель: 4 ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та минус 5 ко­рень из: на­ча­ло ар­гу­мен­та: y конец ар­гу­мен­та конец дроби минус ко­рень из: на­ча­ло ар­гу­мен­та: y конец ар­гу­мен­та , если  ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: y конец ар­гу­мен­та =3.



3
Тип 3 № 6933
i

Най­ди­те зна­че­ние вы­ра­же­ния 24 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ко­си­нус левая круг­лая скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка синус левая круг­лая скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка .



4
Тип 4 № 7884
i

Пре­об­ра­зуй­те вы­ра­же­ние 9x в квад­ра­те плюс 12x плюс 7, вы­де­лив полый квад­рат.



5
Тип 5 № 2133
i

Из ни­же­пе­ре­чис­лен­ных от­ве­тов вы­бе­ри­те корни урав­не­ния:  левая круг­лая скоб­ка x в квад­ра­те минус 1 пра­вая круг­лая скоб­ка в квад­ра­те минус 49 = 0.



6
Тип 6 № 3273
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 2x минус 3y= минус 1, дробь: чис­ли­тель: y, зна­ме­на­тель: x конец дроби =0,75. конец си­сте­мы .



7
Тип 7 № 4174
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка дробь: чис­ли­тель: левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x в квад­ра­те конец дроби минус дробь: чис­ли­тель: x в кубе минус 6x в квад­ра­те плюс 5x минус 1, зна­ме­на­тель: x в кубе конец дроби пра­вая круг­лая скоб­ка dx.



8
Тип 8 № 3815
i

Най­ди­те ра­ди­ус шара, если треть его диа­мет­ра равна 6.



9
Тип 9 № 2129
i

Pешите си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 2 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка боль­ше или равно 4 левая круг­лая скоб­ка 1 минус 3x пра­вая круг­лая скоб­ка ,x плюс 5 боль­ше 0. конец си­сте­мы .



10
Тип 10 № 6951
i

Ре­ши­те урав­не­ние:  синус x ко­си­нус x= дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .



11
Тип 11 № 4199
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 3x в кубе плюс 2x в квад­ра­те , зна­ме­на­тель: x в квад­ра­те конец дроби , про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 1;3 пра­вая круг­лая скоб­ка .



12
Тип 12 № 2470
i

Ре­ши­те не­ра­вен­ство: |x плюс 5| мень­ше или равно 7.



13
Тип 13 № 2724
i

Най­ди­те пло­щадь за­штри­хо­ван­ной фи­гу­ры (см. рис).



14
Тип 14 № 2124
i

Bычис­ли­те ин­те­грал:  при­над­ле­жит t_ минус 5 в сте­пе­ни левая круг­лая скоб­ка 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те d x.



15
Тип 15 № 2405
i

Най­ди­те объем пра­виль­ной тре­уголь­ной усе­чен­ной пи­ра­ми­ды, вы­со­та ко­то­рой 6 м и сто­ро­ны ос­но­ва­ний 3 м и 4 м.



16
Тип 16 № 3272
i

Ре­ши­те урав­не­ние:  ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та =2.



17
Тип 17 № 2088
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка = 4,x минус y = 4. конец си­сте­мы .



18
Тип 18 № 4152
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y= минус 2x в квад­ра­те минус 3x плюс 7,y= минус 3x плюс 7, минус 2 мень­ше или равно x мень­ше или равно 0.



19
Тип 19 № 3524
i

Внеш­ний угол пра­виль­но­го два­дца­ти­уголь­ни­ка равен?



20
Тип 20 № 2128
i

Hай­ди­те част­ное  дробь: чис­ли­тель: b_1, зна­ме­на­тель: q конец дроби для гео­мет­ри­че­ской про­грес­сии, у ко­то­рой сумма пер­во­го и тре­тье­го чле­нов равна 40, а сумма вто­ро­го и чет­вер­то­го равна 80.



21
Тип 21 № 7932
i

Даны точка A (3; 5; −1) и точка B (−2; 4; −3). Най­ди­те длину век­то­ра \overrightarrowAB.



22
Тип 22 № 2691
i

Зна­че­ние про­из­ве­де­ния

 дробь: чис­ли­тель: x в квад­ра­те плюс 3 x плюс 2 x y плюс 6 y, зна­ме­на­тель: 2 x в квад­ра­те плюс x y плюс 6 x плюс 3 y конец дроби умно­жить на дробь: чис­ли­тель: 6 x в квад­ра­те плюс 2 x плюс 3 x y плюс y, зна­ме­на­тель: x y минус 2 x плюс 2 y в квад­ра­те минус 4 y конец дроби

равно



23
Тип 23 № 7922
i

Ре­ши­те урав­не­ние:  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка x в квад­ра­те плюс 4\log _4 левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка плюс 1=0.



24
Тип 24 № 7748
i

Ре­ши­те про­стей­шее три­го­но­мет­ри­че­ское не­ра­вен­ство  тан­генс x боль­ше или равно минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .



25
Тип 25 № 8014
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x в квад­ра­те минус x плюс 2,x_0= минус 1.



26
Тип 26 № 2801
i
Развернуть

Чтобы раз­ре­зать торт про­ве­ли пять диа­мет­ров и по­лу­чи­ли?



27
Тип 27 № 4006
i
Развернуть

Hай­ди­те пло­щадь по­верх­но­сти од­но­го «ребра»



28
Тип 28 № 2068
i
Развернуть

Oпре­де­ли­те, сколь­ки­ми спо­со­ба­ми пара смо­жет раз­ме­стить­ся в ва­го­не типа Плац­карт B.



29
Тип 29 № 2069
i
Развернуть

Oпре­де­ли­те, сколь­ки­ми спо­со­ба­ми пара смо­жет раз­ме­стить­ся в ва­го­не типа Плац­карт А.



30
Тип 30 № 4009
i
Развернуть

Из­го­то­ви­тель вы­брал упа­ков­ку для Пи­ра­мид­ки в виде сферы. Каким дол­жен быть диа­метр упа­ков­ки?



31
Тип 31 № 7718
i

Функ­ция за­да­на урав­не­ни­ем y = минус 4 в сте­пе­ни левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка плюс 4. Уста­но­ви­те со­от­вет­ствия:

A) Нуль функ­ции

Б) Мно­же­ство зна­че­ний функ­ции

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 4 пра­вая круг­лая скоб­ка

2) 2

3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 0 пра­вая круг­лая скоб­ка

4) 1


Ответ:

32
Тип 32 № 7833
i

Шар впи­сан в конус, вы­со­та ко­то­ро­го равна 40, а объем  — 1080π. Уста­но­ви­те со­от­вет­ствие между ра­ди­у­сом ос­но­ва­ния ко­ну­са, ра­ди­у­сом шара и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Ра­ди­ус ос­но­ва­ния ко­ну­са

Б) Ра­ди­ус шара

1) 9

2)  дробь: чис­ли­тель: 36, зна­ме­на­тель: 5 конец дроби

3) 12

4)  дробь: чис­ли­тель: 72, зна­ме­на­тель: 5 конец дроби


Ответ:

33
Тип 33 № 7765
i

Най­ди­те два на­ту­раль­ных числа x и y, x > y, если из­вест­но, что сумма чисел x и y равна 7, а про­из­ве­де­ние раз­но­сти этих чисел на раз­ность квад­ра­тов этих чисел равно 175.

A) Число x при­над­ле­жит про­ме­жут­ку

Б) Число y при­над­ле­жит про­ме­жут­ку

1) [3; 4]

2) (5; 7)

3) [1; 2)

4) (2; 3)


Ответ:

34

Даны урав­не­ния 3 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те минус 2x пра­вая круг­лая скоб­ка = 27 и  ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 1 конец ар­гу­мен­та плюс 1 = x. Уста­но­ви­те со­от­вет­ствия:

A) Число яв­ля­ет­ся кор­нем пер­во­го урав­не­ния, но не яв­ля­ет­ся кор­нем вто­ро­го урав­не­ния

Б) Число яв­ля­ет­ся кор­нем обоих урав­не­ний

1) −1

2) 2

3) 3

4) 1


Ответ:

35
Тип 35 № 7822
i

Дана гео­мет­ри­че­ская про­грес­сия (bn), у ко­то­рой b5  =  −14, b8  =  112. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) q

Б) a1

1) −2

2) 5

3) −2

4) 0,875


Ответ:

36
Тип 36 № 6971
i

Вы­чис­ли­те  ло­га­рифм по ос­но­ва­нию дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби ко­рень из: на­ча­ло ар­гу­мен­та: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та конец ар­гу­мен­та 8 пра­вая круг­лая скоб­ка .



37
Тип 37 № 7793
i

Най­ди­те зна­че­ние вы­ра­же­ния  синус дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 4 конец дроби ко­си­нус дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 6 конец дроби тан­генс дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 3 конец дроби \ctg дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби .



38
Тип 38 № 8082
i

Най­ди­те зна­ме­на­тель гео­мет­ри­че­ской про­грес­сии, если сумма ее тре­тье­го и чет­вер­то­го чле­нов вдвое боль­ше суммы чет­вер­то­го и пя­то­го чле­нов.



39
Тип 39 № 8090
i

Ре­ши­те си­сте­му, со­дер­жа­щую ир­ра­ци­о­наль­ное урав­не­ние

 си­сте­ма вы­ра­же­ний новая стро­ка ко­рень из: на­ча­ло ар­гу­мен­та: x плюс y минус 1 конец ар­гу­мен­та =1, новая стро­ка ко­рень из: на­ча­ло ар­гу­мен­та: x минус y плюс 2 конец ар­гу­мен­та =2y минус 2. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния x плюс y.



40
Тип 40 № 3918
i

Пря­мая OO1 — ось ци­лин­дра. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра, если пло­щадь CC1E1E равна Q.


Завершить работу, свериться с ответами, увидеть решения.