Вариант № 22952

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 3460
i

Вы­чис­ли­те:  левая круг­лая скоб­ка левая круг­лая скоб­ка левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка .



2
Тип 2 № 7855
i

Упро­сти­те вы­ра­же­ние  левая круг­лая скоб­ка 2 минус c пра­вая круг­лая скоб­ка в квад­ра­те минус c левая круг­лая скоб­ка c плюс 4 пра­вая круг­лая скоб­ка , най­ди­те его зна­че­ние при c=0,5. В ответ за­пи­ши­те по­лу­чен­ное число.



3
Тип 3 № 3376
i

Вы­чис­ли­те:  ко­си­нус левая круг­лая скоб­ка 2\arcctg левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка .



4
Тип 4 № 3247
i

Раз­ло­жи­те квад­рат­ный трех­член 2x в квад­ра­те плюс 7x минус 15 на мно­жи­те­ли.



5
Тип 5 № 3377
i

Ре­ши­те урав­не­ние: \abs2x минус 1=4.



6
Тип 6 № 2013
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 4x плюс дробь: чис­ли­тель: 9, зна­ме­на­тель: y конец дроби = 21,17 минус 3x = дробь: чис­ли­тель: 18, зна­ме­на­тель: y конец дроби . конец си­сте­мы .



7
Тип 7 № 8184
i

Най­ди­те  при­над­ле­жит t левая круг­лая скоб­ка e в сте­пе­ни x плюс 5 в сте­пе­ни x плюс 3 пра­вая круг­лая скоб­ка dx.



8
Тип 8 № 8145
i

Об­ра­зу­ю­щая ко­ну­са равна 4 и со­став­ля­ет с плос­ко­стью ос­но­ва­ния угол 30°. Най­ди­те пло­щадь ос­но­ва­ния ко­ну­са.



9
Тип 9 № 2541
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний x левая круг­лая скоб­ка 2x минус 4 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка боль­ше или равно 0,x в квад­ра­те минус 3x мень­ше 0. конец си­сте­мы .



10
Тип 10 № 1945
i

Ре­ши­те урав­не­ние  синус в квад­ра­те x минус 17 синус x плюс 16 = 0 и най­ди­те его корни на x при­над­ле­жит левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .



11
Тип 11 № 4206
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =e в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс e в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка 0;8 пра­вая круг­лая скоб­ка .



12
Тип 12 № 3739
i

Най­ди­те ре­ше­ние си­сте­мы не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: 7x минус 2, зна­ме­на­тель: x минус 3 конец дроби боль­ше или равно 0, дробь: чис­ли­тель: 5x плюс 1, зна­ме­на­тель: 6 минус x конец дроби мень­ше или равно 1. конец си­сте­мы .



13
Тип 13 № 3643
i

Cто­ро­ны тре­уголь­ни­ка равны 4 см, 5 см, 6 см. Най­ди­те про­ек­цию сред­ней сто­ро­ны на боль­шую.



14
Тип 14 № 4127
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 4 до 5, левая круг­лая скоб­ка 3x в квад­ра­те минус 2x пра­вая круг­лая скоб­ка dx.



15
Тип 15 № 3325
i

Ос­но­ва­ни­ем пра­виль­ной тре­уголь­ной пи­ра­ми­ды яв­ля­ет­ся рав­но­сто­рон­ний тре­уголь­ник со сто­ро­ной 6 см. Вы­со­та пи­ра­ми­ды равна 9 см. Най­ди­те объем пи­ра­ми­ды.



16
Тип 16 № 6962
i

Най­ди­те про­из­ве­де­ние кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния x в квад­ра­те минус 5x минус 3=4 ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 5x плюс 9. конец ар­гу­мен­та



17
Тип 17 № 2624
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 8 в сте­пе­ни x плюс левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни x боль­ше 2,2 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка мень­ше или равно 64 умно­жить на 2 в сте­пе­ни x . конец си­сте­мы .



18
Тип 18 № 4159
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=x в квад­ра­те плюс 3,y=3, минус 2 мень­ше или равно x мень­ше или равно 4.



19
Тип 19 № 8149
i

Ос­но­ва­ния рав­но­бед­рен­ной тра­пе­ции ABCD равны 30 и 18, а ост­рый угол равен 45°. Най­ди­те пло­щадь тра­пе­ции.



20
Тип 20 № 3773
i

По­сле­до­ва­тель­ность (bn) гео­мет­ри­че­ская про­грес­сия. Най­ди­те: b4, если b_1=128 и q= минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .



21
Тип 21 № 8151
i

Если \vec a левая круг­лая скоб­ка минус 4; 2 пра­вая круг­лая скоб­ка , \vec b левая круг­лая скоб­ка 3; минус 2 пра­вая круг­лая скоб­ка , то длина век­то­ра \vec c = \vec a плюс 3\vec b равна



22
Тип 22 № 8132
i

Упро­сти­те вы­ра­же­ние:  дробь: чис­ли­тель: a в сте­пе­ни 4 умно­жить на a в сте­пе­ни левая круг­лая скоб­ка минус 7 пра­вая круг­лая скоб­ка , зна­ме­на­тель: левая круг­лая скоб­ка a в квад­ра­те пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 4 пра­вая круг­лая скоб­ка конец дроби .



23
Тип 23 № 8153
i

Ука­жи­те про­из­ве­де­ние кор­ней урав­не­ния: x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 4 x плюс 1 пра­вая круг­лая скоб­ка = 6 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 6 16 пра­вая круг­лая скоб­ка .



24
Тип 24 № 8154
i

Ре­ши­те не­ра­вен­ство:  ко­рень из: на­ча­ло ар­гу­мен­та: 3 плюс x конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 3 минус x конец ар­гу­мен­та боль­ше 0.



25
Тип 25 № 8155
i

На­пи­ши­те урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = x в квад­ра­те минус x минус 6 в точке x0  =  4.



26
Тип 26 № 3466
i
Развернуть

Сколь­ки­ми спо­со­ба­ми Ма­ди­на может вы­брать в ма­га­зи­не ком­плект «чашка+блюд­це+ложка»?



27
Тип 27 № 2627
i
Развернуть

Учи­тель рас­ста­вил на одной полке шкафа по одной мо­де­ли фигур каж­до­го вида. Рядом сто­я­щая уче­ни­ца за­ме­ти­ла, что рас­ста­вить эти фи­гу­ры на полке можно в раз­лич­ном по­ряд­ке. Сколь­ко таких ва­ри­ан­тов раз­ме­ще­ния су­ще­ству­ет?



28
Тип 28 № 2628
i
Развернуть

Учи­тель для де­мон­стра­ции на уроке решил по­ста­вить на одну полку шкафа толь­ко два тела вра­ще­ния. сколь­ко таких спо­со­бов су­ще­ству­ет (по­ря­док фигур на полке не имеет зна­че­ния)?



29
Тип 29 № 4008
i
Развернуть

Kакой вы­со­ты долж­на быть упа­ков­ка для Пи­ра­мид­ки?



30
Тип 30 № 2630
i
Развернуть

Ка­ко­ва ве­ро­ят­ность раз­ме­ще­ния на пер­вой полке двух тел вра­ще­ния (округ­ли­те до сотых)?



31
Тип 31 № 7727
i

Функ­ция за­да­на урав­не­ни­ем y = 3 синус x плюс 3. Уста­но­ви­те со­от­вет­ствия:

A) Нули функ­ции

Б) Об­ласть до­пу­сти­мых зна­че­ний функ­ции

1) [−2; 4]

2)  левая фи­гур­ная скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи k: k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка

3) [0; 6]

4)  левая фи­гур­ная скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k: k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка


Ответ:

32
Тип 32 № 7840
i

Куб, объем ко­то­ро­го равен 8, впи­сан в шар. Уста­но­ви­те со­от­вет­ствие между ра­ди­у­сом шара, пло­ща­дью его по­верх­но­сти и чис­ло­вы­ми про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их зна­че­ния.

A) Ра­ди­ус шара

Б) Пло­щадь по­верх­но­сти шара

1) (0; 1)

2) [3; 4]

3) (1; 2]

4) (33; 40)


Ответ:

33
Тип 33 № 7731
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  левая круг­лая скоб­ка 2x минус 3 пра­вая круг­лая скоб­ка в кубе . Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x2, сум­мой ко­эф­фи­ци­ен­тов мно­го­чле­на и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x2

Б) Сумма ко­эф­фи­ци­ен­тов мно­го­чле­на

1) [−1; 0]

2) (−55; −36)

3) [−39; −30]

4) [5; 14)


Ответ:

34
Тип 34 № 7790
i

Даны урав­не­ния  дробь: чис­ли­тель: x минус 4, зна­ме­на­тель: x минус 6 конец дроби = 2 и x в квад­ра­те минус x минус 6=0. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) −2, 3, 8

2) −2, 8, 1

3) −3, 5, 1

4) 3, −1, 8


Ответ:

35
Тип 35 № 7813
i

Гео­мет­ри­че­ская про­грес­сия  левая круг­лая скоб­ка b_n пра­вая круг­лая скоб­ка за­да­на фор­му­лой n-го члена  b_n = 2 умно­жить на левая круг­лая скоб­ка минус 3 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка n минус 1 пра­вая круг­лая скоб­ка . Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) b4

Б) S3

1) 14

2) −54

3) 162

4) 3


Ответ:

36
Тип 36 № 3864
i

Вы­чис­ли­те зна­че­ние вы­ра­же­ния:  дробь: чис­ли­тель: \abs минус 2,5 плюс 4,6, зна­ме­на­тель: минус 1,6 плюс \abs2 умно­жить на 3,5 минус \abs минус 4 конец дроби .



37
Тип 37 № 7800
i

Най­ди­те зна­че­ние вы­ра­же­ния 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби тан­генс дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби .



38
Тип 38 № 3870
i

Сумма цифр че­ты­рех­знач­но­го числа равна 16 и все цифры числа об­ра­зу­ют ариф­ме­ти­че­скую про­грес­сию. При­чем, цифра еди­ниц на 4 боль­ше цифры сотен. Вы­бе­ри­те вер­ные утвер­жде­ния.



39
Тип 39 № 8097
i

Ре­ши­те си­сте­му по­ка­за­тель­но-сте­пен­ных урав­не­ний

 си­сте­ма вы­ра­же­ний новая стро­ка ко­рень \tfracx4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 2x минус y конец ар­гу­мен­та =2, новая стро­ка левая круг­лая скоб­ка 2x минус y пра­вая круг­лая скоб­ка умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка \tfracx пра­вая круг­лая скоб­ка 4=1000. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: x, зна­ме­на­тель: y конец дроби .



40
Тип 40 № 3929
i

Точка O — центр шара, точка O1 — центр круга — се­че­ния шара. Най­ди­те объем шара, если O1N = 6 и угол O1NO равен 30°.


Завершить работу, свериться с ответами, увидеть решения.