Вариант № 22950

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 2512
i

Вы­чис­ли­те: 7 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 9 минус ло­га­рифм по ос­но­ва­нию 2 18 пра­вая круг­лая скоб­ка .



2
Тип 2 № 3415
i

Зна­че­ние вы­ра­же­ния 2 ко­рень из: на­ча­ло ар­гу­мен­та: x плюс y конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка при x плюс y=2,25 равно



3
Тип 3 № 6931
i

Най­ди­те зна­че­ние вы­ра­же­ния 7 тан­генс 13 гра­ду­сов умно­жить на тан­генс 77 гра­ду­сов .



4
Тип 4 № 1979
i

Ука­жи­те вер­ное раз­ло­же­ние на мно­жи­те­ли мно­го­чле­на ab минус a в квад­ра­те плюс 2a минус 2b



5
Тип 5 № 2082
i

Ко­рень урав­не­ния y = y', при y = x в квад­ра­те плюс 1 равен?



6
Тип 6 № 8176
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний x минус 5y = минус 21, x плюс y = минус 9. конец си­сте­мы .



7
Тип 7 № 8144
i

Най­ди­те  при­над­ле­жит t левая круг­лая скоб­ка e в сте­пе­ни x плюс 3 в сте­пе­ни x плюс 2 пра­вая круг­лая скоб­ка dx.



8
Тип 8 № 3290
i

Опре­де­ли­те длину диа­го­на­ли осе­во­го се­че­ния ци­лин­дра с ра­ди­у­сом 5 см и вы­со­той 24 см.



9
Тип 9 № 2064
i

Pешите си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: 2 минус x, зна­ме­на­тель: x плюс 1 конец дроби минус 1 боль­ше или равно 0, дробь: чис­ли­тель: 2 минус x, зна­ме­на­тель: x плюс 1 конец дроби минус 2 мень­ше или равно 0. конец си­сте­мы .



10
Тип 10 № 6949
i

Ре­ши­те урав­не­ние  ко­си­нус левая круг­лая скоб­ка 3x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .



11
Тип 11 № 4197
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =7x в кубе минус x плюс 3, про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 1;6 пра­вая круг­лая скоб­ка .



12
Тип 12 № 7898
i

Ре­ши­те не­ра­вен­ство 2 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка плюс 3 боль­ше x.



13
Тип 13 № 2517
i

Окруж­ность, впи­сан­ная в рав­но­бед­рен­ный тре­уголь­ник, делит в точке ка­са­ния одну из бо­ко­вых сто­рон на два от­рез­ка (как по­ка­за­но на ри­сун­ке), длины ко­то­рых равны 14 и 3, счи­тая от вер­ши­ны. Най­ди­те пе­ри­метр тре­уголь­ни­ка.



14
Тип 14 № 4141
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от минус 2 до 3, ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 2 конец ар­гу­мен­та dx.



15
Тип 15 № 2160
i

Най­ди­те диа­го­наль пря­мо­уголь­ной приз­мы, в ос­но­ва­нии ко­то­рой лежит пря­мо­уголь­ник со сто­ро­на­ми 8 см и 4 ко­рень из 5 см и бо­ко­вое ребро приз­мы 5 см.



16
Тип 16 № 2098
i

Ука­жи­те корни урав­не­ния:  левая круг­лая скоб­ка x в квад­ра­те минус 4 пра­вая круг­лая скоб­ка умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: x минус 1 конец ар­гу­мен­та = 0.



17
Тип 17 № 3324
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка 2x плюс y в квад­ра­те пра­вая круг­лая скоб­ка =1,2 в сте­пе­ни левая круг­лая скоб­ка x плюс y в квад­ра­те пра­вая круг­лая скоб­ка минус 4=0. конец си­сте­мы .



18
Тип 18 № 4150
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=x в квад­ра­те плюс 2x,y=x плюс 2.



19
Тип 19 № 7910
i

На­клон­ная крыша уста­нов­ле­на на трёх вер­ти­каль­ных опо­рах, рас­по­ло­жен­ных на одной пря­мой. Сред­няя опора стоит по­се­ре­ди­не между малой и боль­шой опо­ра­ми (см. рис.). Вы­со­та малой опоры 1,8 м, вы­со­та боль­шой опоры 2,8 м. Най­ди­те вы­со­ту сред­ней опоры.



20
Тип 20 № 8190
i

Ариф­ме­ти­че­ская про­грес­сия 5, 8, 11... и гео­мет­ри­че­ская про­грес­сия 4, 8, 16... имеют по 50 чле­нов. Сколь­ко оди­на­ко­вых чле­нов в обеих про­грес­си­ях?



21
Тип 21 № 7971
i

На ри­сун­ке изоб­ражён пря­мо­уголь­ник ABCD, диа­го­на­ли ко­то­ро­го пе­ре­се­ка­ют­ся в точке O. Най­ди­те ска­ляр­ное про­из­ве­де­ние век­то­ров: а) \overrightarrowAD умно­жить на \overrightarrowAB, б) \overrightarrowAO умно­жить на \overrightarrowBO, если AB  =  12, BC  =  5.



22
Тип 22 № 2026
i

Зна­че­ние част­но­го

 дробь: чис­ли­тель: a в квад­ра­те плюс a минус 6, зна­ме­на­тель: 2 a в квад­ра­те плюс 5 a минус 3 конец дроби : дробь: чис­ли­тель: 3 a в квад­ра­те минус 5 a минус 2, зна­ме­на­тель: 2 a в квад­ра­те плюс a минус 1 конец дроби

равно



23
Тип 23 № 6967
i

Пусть x0  — наи­боль­ший ко­рень урав­не­ния \log в квад­ра­те _9 левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 81 конец дроби пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию 9 x минус 22=0, тогда зна­че­ние вы­ра­же­ния 3 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x_0 конец ар­гу­мен­та равно ...



24
Тип 24 № 7742
i

Ре­ши­те не­ра­вен­ство \log _0,5 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка боль­ше 2.



25
Тип 25 № 8063
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =2 синус x минус \operatorname\ctgx,x_0= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби .



26
Тип 26 № 4005
i
Развернуть

Най­ди­те пло­щадь по­верх­но­сти всех «угол­ков»



27
Тип 27 № 2417
i
Развернуть

Каков объем дач­но­го до­ми­ка? Ответ при­ве­ди­те в ку­би­че­ских мет­рах.



28
Тип 28 № 2418
i
Развернуть

Най­ди­те ко­ли­че­ство сте­но­вых па­не­лей, ко­то­рое по­тре­бу­ет­ся для стро­и­тель­ства до­ми­ка без учета от­хо­дов, если па­не­ли не раз­ре­зать.



29
Тип 29 № 3399
i
Развернуть

Най­ди­те массу под­став­ки, если удель­ная плот­ность гра­ни­та 2,5 г/см3. Ответ вы­ра­зить в кг.



30
Тип 30 № 2420
i
Развернуть

Рас­счи­тай­те наи­мень­шую пло­щадь от­хо­дов от сте­но­вых па­не­лей, остав­ших­ся после стро­и­тель­ства в квад­рат­ных мет­рах, с уче­том двух окон и двери.



31
Тип 31 № 7716
i

Функ­ция за­да­на урав­не­ни­ем y = 4 ко­си­нус x плюс 2. Уста­но­ви­те со­от­вет­ствие между наи­боль­шим и наи­мень­шим зна­че­ни­я­ми функ­ции и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Наи­боль­шее зна­че­ние функ­ции

Б) Наи­мень­шее зна­че­ние функ­ции

1) 1

2) 3

3) −2

4) 6


Ответ:

32
Тип 32 № 7831
i

Ос­но­ва­ния рав­но­бед­рен­ной тра­пе­ции равны 21 и 39, а вы­со­та равна 40. Уста­но­ви­те со­от­вет­ствие между дли­ной бо­ко­вой сто­ро­ны тра­пе­ции, ра­ди­у­сом окруж­но­сти, опи­сан­ной около нее и чис­ло­вы­ми про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их чис­ло­вые зна­че­ния.

A) Бо­ко­вая сто­ро­на тра­пе­ции

Б) Ра­ди­ус опи­сан­ной окруж­но­сти

1) (24; 27]

2) [12; 18]

3) [6; 9)

4) (36; 42)


Ответ:

33
Тип 33 № 7763
i

Най­ди­те два числа x и y, x > y, если из­вест­но, что про­из­ве­де­ние кубов этих чисел равно −8, а сумма кубов этих чисел равна −7.

A) Число x при­над­ле­жит про­ме­жут­ку

Б) Число y при­над­ле­жит про­ме­жут­ку

1) (−3; 0)

2) (2; 4)

3) (5; 6]

4) [1; 2]


Ответ:

34
Тип 34 № 7787
i

Даны урав­не­ния x в квад­ра­те плюс 4 = x левая круг­лая скоб­ка 2x минус 3 пра­вая круг­лая скоб­ка и  левая круг­лая скоб­ка x в квад­ра­те плюс 4x пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x минус 3 конец ар­гу­мен­та = 0. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) −1, 3, 4

2) 2, 1, 0

3) 5, −1, 4

4) 4, 1, 8


Ответ:

35
Тип 35 № 7804
i

В ариф­ме­ти­че­ской про­грес­сии (an) вто­рой член равен 18, а раз­ность про­грес­сии d  =  2,4. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) a1

Б) S7

1) 15,6

2) 159,6

3) 13,2

4) 142,8


Ответ:

36
Тип 36 № 3121
i

Зна­че­ние вы­ра­же­ния  ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка де­ся­тич­ный ло­га­рифм ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка де­ся­тич­ный ло­га­рифм ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка равно



37
Тип 37 № 7791
i

Най­ди­те зна­че­ние вы­ра­же­ния  синус 120 гра­ду­сов ко­си­нус 315 гра­ду­сов тан­генс 150 гра­ду­сов \ctg300 гра­ду­сов .



38
Тип 38 № 8209
i

Сумма трех чисел, со­став­ля­ю­щих ариф­ме­ти­че­скую про­грес­сию, у ко­то­рой раз­ность боль­ше нуля, равна 18. Если к этим чис­лам при­ба­вить со­от­вет­ствен­но 4, 2 и 18, то по­лу­чен­ные числа со­став­ля­ют пер­вые три члена гео­мет­ри­че­ской про­грес­сии. Най­ди­те эти три числа.



39
Тип 39 № 8095
i

Ре­ши­те си­сте­му

 си­сте­ма вы­ра­же­ний новая стро­ка 3 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка y плюс 1 пра­вая круг­лая скоб­ка =375, новая стро­ка 3 в сте­пе­ни левая круг­лая скоб­ка y минус 1 пра­вая круг­лая скоб­ка умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =15. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: x, зна­ме­на­тель: y конец дроби .



40
Тип 40 № 8170
i

В сфере, пло­щадь по­верх­но­сти ко­то­рой равна 3468 см2 (π ≈ 3), на рас­сто­я­нии OO1 от ее цен­тра про­ве­де­но се­че­ние. Вы­бе­ри­те из пред­став­лен­ных чисел те, ко­то­рые яв­ля­ют­ся де­ли­те­ля­ми зна­че­ния пло­ща­ди про­ве­ден­но­го се­че­ния.


Завершить работу, свериться с ответами, увидеть решения.