Вариант № 22945

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 3855
i

Вы­чис­ли­те  дробь: чис­ли­тель: 49 в сте­пе­ни левая круг­лая скоб­ка 25 пра­вая круг­лая скоб­ка умно­жить на 625 в сте­пе­ни левая круг­лая скоб­ка 15 пра­вая круг­лая скоб­ка , зна­ме­на­тель: левая круг­лая скоб­ка 5 в сте­пе­ни левая круг­лая скоб­ка 12 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка 7 в сте­пе­ни левая круг­лая скоб­ка 16 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в кубе конец дроби .



2
Тип 2 № 8152
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 2x в квад­ра­те минус y, зна­ме­на­тель: x минус 4 конец дроби минус 2x плюс дробь: чис­ли­тель: 3x, зна­ме­на­тель: 4 минус x конец дроби при x  =  5, y  =  10.



3
Тип 3 № 2617
i

Най­ди­те зна­че­ние вы­ра­же­ния:

 тан­генс в квад­ра­те дробь: чис­ли­тель: 4 Пи , зна­ме­на­тель: 3 конец дроби синус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби минус 2 ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс \ctg дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби .



4
Тип 4 № 7878
i

При­ве­ди­те од­но­член 4a в квад­ра­те b в сте­пе­ни 6 a в сте­пе­ни 5 b в сте­пе­ни левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка к стан­дарт­но­му виду.



5
Тип 5 № 2607
i

Ре­ши­те урав­не­ние: 4x в сте­пе­ни 4 минус 12x в квад­ра­те плюс 9 = 0.



6
Тип 6 № 3811
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 3x минус 5y =23,2x плюс 3y=9. конец си­сте­мы .



7
Тип 7 № 4192
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка синус x ко­си­нус 2x плюс синус 2x ко­си­нус x пра­вая круг­лая скоб­ка dx.



8
Тип 8 № 1974
i

Pас­сто­я­ние от цен­тра шара до плос­ко­сти се­че­ния равно 5 ко­рень из 3 . Ра­ди­ус шара 10, тогда ра­ди­ус се­че­ния шара равен



9
Тип 9 № 2226
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: 2x минус 1, зна­ме­на­тель: x конец дроби мень­ше 0, дробь: чис­ли­тель: 3x плюс 5, зна­ме­на­тель: x минус 2 конец дроби мень­ше или равно 0. конец си­сте­мы .



10
Тип 10 № 6945
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния  синус 4x= дробь: чис­ли­тель: ко­рень из 2 , зна­ме­на­тель: 2 конец дроби .



11
Тип 11 № 4202
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =2 левая круг­лая скоб­ка 1 плюс 2x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 10;8 пра­вая круг­лая скоб­ка .



12
Тип 12 № 2610
i

Ре­ши­те не­ра­вен­ство: 3x плюс 5 мень­ше или равно 4x плюс 2.



13
Тип 13 № 7904
i

Сред­няя линия MN, па­рал­лель­ная сто­ро­не AC, равна по­ло­ви­не сто­ро­ны AB. Най­ди­те угол ABC, если угол BMN равен 70 гра­ду­сов .



14
Тип 14 № 4137
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 3 до 6, дробь: чис­ли­тель: 8x минус 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та конец дроби dx.



15
Тип 15 № 3464
i

Объем пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды равен 400 см3, вы­со­та равна 12 см. Опре­де­ли­те пол­ную по­верх­ность пи­ра­ми­ды.



16
Тип 16 № 8130
i

Ре­ши­те урав­не­ние 2 в сте­пе­ни левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка минус x минус 1 пра­вая круг­лая скоб­ка =1.



17
Тип 17 № 3667
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний ко­рень из: на­ча­ло ар­гу­мен­та: x минус 6 конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: x минус 12 конец ар­гу­мен­та мень­ше x минус 1,2x минус 3 мень­ше 33. конец си­сте­мы .



18
Тип 18 № 4151
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y= минус x в квад­ра­те плюс 2x,y= минус x минус 1.



19
Тип 19 № 2480
i

Внут­рен­ний угол пра­виль­но­го мно­го­уголь­ни­ка равен 172°. Ко­ли­че­ство сто­рон дан­но­го мно­го­уголь­ни­ка равно



20
Тип 20 № 8015
i

Сумма пер­вых трех чле­нов ариф­ме­ти­че­ской про­грес­сии равна 27, а сумма по­след­них трех чле­нов дан­ной про­грес­сии равна 45. Сколь­ко чле­нов в за­дан­ной ариф­ме­ти­че­ской про­грес­сии, если ее пер­вый член равен 7?



21
Тип 21 № 7946
i

Най­ди­те |\veca плюс \vecb|:



22
Тип 22 № 2116
i

Из­бавь­тесь от ир­ра­ци­о­наль­но­сти в зна­ме­на­те­ле:  дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: x минус y конец ар­гу­мен­та конец дроби .



23
Тип 23 № 8007
i

Ре­ши­те урав­не­ние \log _x левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка =0,5.



24
Тип 24 № 8154
i

Ре­ши­те не­ра­вен­ство:  ко­рень из: на­ча­ло ар­гу­мен­та: 3 плюс x конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 3 минус x конец ар­гу­мен­та боль­ше 0.



25
Тип 25 № 8020
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та ,x_0=4.



26
Тип 26 № 3824
i
Развернуть

Опре­де­ли­те пло­щадь ко­ри­до­ра.



27
Тип 27 № 3152
i
Развернуть

Сколь­ко ше­сти­знач­ных кодов для от­кры­ва­ния сейфа можно со­ста­вить из дан­ных цифр так, чтобы буква M была пер­вой?



28
Тип 28 № 3153
i
Развернуть

Сколь­ко ва­ри­ан­тов воз­мож­ны при усло­вии, что цифра 1 не долж­на быть пер­вой?



29
Тип 29 № 3154
i
Развернуть

Сколь­ко ва­ри­ан­тов воз­мож­ны при усло­вии, что буква K не может сто­ять ни на пер­вом месте, ни на ше­стом месте?



30
Тип 30 № 3155
i
Развернуть

Сколь­ко ше­сти­знач­ных кодов для от­кры­ва­ния сейфа воз­мож­ны, если буквы M и K долж­ны сто­ять рядом?



31
Тип 31 № 7712
i

Квад­ра­тич­ная функ­ция за­да­на урав­не­ни­ем y = x в квад­ра­те плюс 2x минус 3. Уста­но­ви­те со­от­вет­ствие между ну­ля­ми функ­ции и ко­ор­ди­на­та­ми вер­ши­ны па­ра­бо­лы.

A)  Нули функ­ции

Б)  Ко­ор­ди­на­ты вер­ши­ны па­ра­бо­лы

1)  (−1; −4)

2)  {3; −1}

3)  {−3; 1}

4)  (1; 4)


Ответ:

32
Тип 32 № 8039
i

Даны две сферы: с цен­тром в точке O, ра­ди­у­сом R  =  6 и с цен­тром в точке P, ра­ди­у­сом r  =  2. Сферы рас­по­ло­же­ны так что центр каж­дой сферы лежит вне дру­гой сферы. Уста­но­ви­те со­от­вет­ствие между при­ве­ден­ны­ми ниже дан­ны­ми.

A) Сферы ка­са­ют­ся при

Б) Сферы пе­ре­се­ка­ют­ся при

1) OP  =  7

2) OP  =  8

3) OP  =  9

4) OP  =  10


Ответ:

33
Тип 33 № 7734
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  левая круг­лая скоб­ка 3x минус 4 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка 2x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те . Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x2, ко­эф­фи­ци­ен­том при x и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x2

Б) Ко­эф­фи­ци­ент при x

1) [20; 30)

2) (−25; −20)

3) (−10; 10)

4) [40; 42]


Ответ:

34
Тип 34 № 7777
i

Даны урав­не­ния  ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x в квад­ра­те минус 8x пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию 2 4 и  дробь: чис­ли­тель: x в квад­ра­те минус 15x плюс 54, зна­ме­на­тель: x минус 6 конец дроби = 0. Уста­но­ви­те со­от­вет­ствия:

A) Число яв­ля­ет­ся кор­нем пер­во­го урав­не­ния, но не яв­ля­ет­ся кор­нем вто­ро­го урав­не­ния

Б) Число яв­ля­ет­ся кор­нем обоих урав­не­ний

1) 3

2) 2

3) −1

4) 9


Ответ:

35
Тип 35 № 7816
i

Гео­мет­ри­че­ская про­грес­сия за­да­ет­ся фор­му­лой  b_n =160 умно­жить на 3 в сте­пе­ни n . Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) b1

Б) S4

1) 240

2) 9 600

3) 19 200

4) 480


Ответ:

36
Тип 36 № 3685
i

Pас­сто­я­ние на плане между двумя точ­ка­ми 2,3 см. Вы­чис­ли­те со­от­вет­ству­ю­щее рас­сто­я­ние в дей­стви­тель­но­сти, если

Mас­штаб плана равен 1 : 1 000 000.



37
Тип 37 № 8044
i

Зна­че­ние вы­ра­же­ния 2 ко­си­нус в квад­ра­те x плюс 2 синус в квад­ра­те x левая круг­лая скоб­ка 1 плюс тан­генс в квад­ра­те x пра­вая круг­лая скоб­ка умно­жить на ко­си­нус в квад­ра­те x плюс 4 равно



38
Тип 38 № 4018
i

Даны три числа, об­ра­зу­ю­щие гео­мет­ри­че­скую про­грес­сию. Если от пер­во­го числа вы­честь 12, то эти числа об­ра­зу­ют ариф­ме­ти­чеcкую про­грес­сию, ко­то­рые в сумме равны боль­ше­му члену гео­мет­ри­че­ской про­грес­сии. Най­ди­те эти числа и вы­бе­ри­те из пред­ло­жен­ных ва­ри­ан­тов числа, со­от­вет­ству­ю­щие гео­мет­ри­че­ской или ариф­ме­ти­чеcкой про­грес­си­ям



39
Тип 39 № 8112
i

Ре­ши­те си­сте­му ра­ци­о­наль­ных урав­не­ний

 си­сте­ма вы­ра­же­ний новая стро­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: x минус y конец дроби минус дробь: чис­ли­тель: 1, зна­ме­на­тель: x плюс y конец дроби =1, новая стро­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: x плюс y конец дроби минус дробь: чис­ли­тель: 1, зна­ме­на­тель: x минус y конец дроби =4. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния 2x плюс 3y.



40
Тип 40 № 3925
i

В конус с вы­со­той 15 см и ра­ди­у­сом 10 см впи­сан ци­линдр с вы­со­той 12 см. Най­ди­те объём ци­лин­дра.


Завершить работу, свериться с ответами, увидеть решения.