Вариант № 21726

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 7888
i

Вы­чис­ли­те  дробь: чис­ли­тель: левая круг­лая скоб­ка 2 в кубе пра­вая круг­лая скоб­ка в сте­пе­ни 4 умно­жить на 16 в сте­пе­ни 6 , зна­ме­на­тель: 64 в кубе умно­жить на 8 в сте­пе­ни 5 конец дроби .



2

Пред­ставь­те в виде дроби вы­ра­же­ние  дробь: чис­ли­тель: 10x, зна­ме­на­тель: 2x минус 3 конец дроби минус 5x   и най­ди­те его зна­че­ние при x=0,5.



3
Тип 3 № 6926
i

Най­ди­те зна­че­ние вы­ра­же­ния 8 синус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби умно­жить на ко­си­нус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби .



4
Тип 4 № 7890
i

Упро­сти­те вы­ра­же­ние x левая круг­лая скоб­ка 3x в квад­ра­те плюс 2x пра­вая круг­лая скоб­ка минус 9x в квад­ра­те левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка



5
Тип 5 № 3447
i

Ре­ши­те урав­не­ние: 2 левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка =1 минус 3 x .



6
Тип 6 № 2188
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 5x минус 2y = 15, минус 2x плюс y = минус 7. конец си­сте­мы .



7
Тип 7 № 4182
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка 5 синус x плюс 2 ко­си­нус x пра­вая круг­лая скоб­ка dx.



8
Тип 8 № 4100
i

Из пол­но­го бо­ка­ла, име­ю­ще­го форму ко­ну­са вы­со­той 9, от­ли­ли треть (по объ­е­му) жид­ко­сти. Вы­чис­ли­те  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби h в кубе , где h  — вы­со­та остав­шей­ся жид­ко­сти.



9
Тип 9 № 2134
i

Pешите си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: 7 минус 3x, зна­ме­на­тель: 2 минус 5x конец дроби мень­ше или равно 2, дробь: чис­ли­тель: 2x плюс 1, зна­ме­на­тель: 3x минус 3 конец дроби боль­ше 4. конец си­сте­мы .



10
Тип 10 № 1945
i

Ре­ши­те урав­не­ние  синус в квад­ра­те x минус 17 синус x плюс 16 = 0 и най­ди­те его корни на x при­над­ле­жит левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .



11
Тип 11 № 4200
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =3x левая круг­лая скоб­ка 2 минус x в квад­ра­те пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 4;2 пра­вая круг­лая скоб­ка .



12
Тип 12 № 2435
i

Из дан­ных пар чисел (x; y), вы­бе­ри­те ту, ко­то­рая не удо­вле­тво­ря­ет ре­ше­нию не­ра­вен­ства: 4x минус 5 боль­ше или равно y.



13
Тип 13 № 7904
i

Сред­няя линия MN, па­рал­лель­ная сто­ро­не AC, равна по­ло­ви­не сто­ро­ны AB. Най­ди­те угол ABC, если угол BMN равен 70 гра­ду­сов .



14
Тип 14 № 4135
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 12 до 15, левая круг­лая скоб­ка 4 ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс x пра­вая круг­лая скоб­ка dx.



15
Тип 15 № 1964
i

Опре­де­ли­те по ри­сун­ку длину от­рез­ка ВK, если CD = 5,8 см.



16
Тип 16 № 3427
i

Про­из­ве­де­ние кор­ней урав­не­ния 1,5 в сте­пе­ни левая круг­лая скоб­ка 2 x в квад­ра­те плюс 1 пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка дробь: чис­ли­тель: 8, зна­ме­на­тель: 27 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка .



17
Тип 17 № 3458
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний ко­рень из: на­ча­ло ар­гу­мен­та: 6 x плюс 12 конец ар­гу­мен­та мень­ше 12, минус 3 x плюс 5 боль­ше или равно 8. конец си­сте­мы .



18
Тип 18 № 8005
i

Пло­щадь фи­гу­ры, огра­ни­чен­ной гра­фи­ка­ми функ­ций y=x в квад­ра­те минус 1 и y=x плюс 1 равна



19
Тип 19 № 3848
i

Най­ди­те пло­щадь ромба, если его диа­го­на­ли от­но­сят­ся как 3 : 4, а бо­ко­вая сто­ро­на равна 10.



20
Тип 20 № 3242
i

Най­ди­те по­ло­жи­тель­ное число С, ко­то­рое нужно рас­по­ло­жить между чис­ла­ми А = 81 и В = 9 так, чтобы по­лу­чи­лось три по­сле­до­ва­тель­ных члена А, С и В гео­мет­ри­че­ской про­грес­сии.



21
Тип 21 № 7997
i

Най­ди­те ска­ляр­ное про­из­ве­де­ние век­то­ров \overrightarrowAB и \overrightarrowCD, если A левая круг­лая скоб­ка 5;12; минус 3 пра­вая круг­лая скоб­ка ; B левая круг­лая скоб­ка 10; минус 2;14 пра­вая круг­лая скоб­ка ; C левая круг­лая скоб­ка 4; минус 20;7 пра­вая круг­лая скоб­ка ; D левая круг­лая скоб­ка 12;8;3 пра­вая круг­лая скоб­ка .



22
Тип 22 № 3856
i

Ука­жи­те урав­не­ние, рав­но­силь­ное урав­не­нию: 2x плюс 3y= минус 7x плюс 8y плюс 4.



23
Тип 23 № 8186
i

Ре­ши­те урав­не­ние:  ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка = 2.



24
Тип 24 № 7720
i

Ре­ши­те не­ра­вен­ство  ко­рень из: на­ча­ло ар­гу­мен­та: 3 плюс 4x конец ар­гу­мен­та боль­ше ко­рень из: на­ча­ло ар­гу­мен­та: 6x минус 9 конец ар­гу­мен­та .



25
Тип 25 № 8018
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =3x в кубе плюс 2x в квад­ра­те минус x плюс 1,x_0= минус 5.



26
Тип 26 № 3556
i
Развернуть

Kакой про­цент со­став­ля­ет длина малой арки от длины боль­шой арки?



27
Тип 27 № 3592
i
Развернуть

Hай­ди­те пло­щадь, за­ни­ма­е­мой одной тра­пе­ци­е­вид­ной фо­то­гра­фи­ей на стен­де.



28
Тип 28 № 8122
i
Развернуть

Рас­по­ло­жи­те ре­зер­ву­а­ры по воз­рас­та­нию их объ­е­мов, если ра­ди­у­сы ре­зер­ву­а­ры уве­ли­чить на 1.



29
Тип 29 № 8036
i
Развернуть

Опре­де­ли­те объем ре­зер­ву­а­ра C.



30
Тип 30 № 8123
i
Развернуть

Из­вест­но, что чем боль­ше пло­щадь бо­ко­вой по­верх­но­сти и верх­ней части ре­зер­ву­а­ра, тем быст­рее про­ис­хо­дит на­грев воды в нем на солн­це. Опре­де­ли­те ре­зер­ву­ар, в ко­то­ром вода на­гре­ва­ет­ся быст­рее.



31

Функ­ция за­да­на урав­не­ни­ем y = 5 в сте­пе­ни x минус 5. Уста­но­ви­те со­от­вет­ствия:

A) Нуль функ­ции

Б) Мно­же­ство зна­че­ний функ­ции

1)  левая круг­лая скоб­ка минус 5; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка

2)  левая круг­лая скоб­ка 0; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка

3) 1

4) 0


Ответ:

32
Тип 32 № 7834
i

Шар впи­сан в конус, длина об­ра­зу­ю­щей ко­то­ро­го равна 25, а пло­щадь пол­ной по­верх­но­сти равна 224π. Уста­но­ви­те со­от­вет­ствие между вы­со­той ко­ну­са, ра­ди­у­сом шара и чис­ло­вы­ми про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их зна­че­ния.

A) Вы­со­та ко­ну­са

Б) Ра­ди­ус шара

1) (10; 14)

2) [15; 19)

3) (21; 26]

4) [5; 7]


Ответ:

33
Тип 33 № 7759
i

Най­ди­те два на­ту­раль­ных числа a и b, если из­вест­но, что от­но­ше­ние чисел a и b равно 2, а от­но­ше­ние суммы их квад­ра­тов этих чисел к их раз­но­сти равно 10.

A) Число a при­над­ле­жит про­ме­жут­ку

Б) Число b при­над­ле­жит про­ме­жут­ку

1) (6; 10)

2) (3; 5)

3) (1; 2]

4) (0; 1)


Ответ:

34
Тип 34 № 7774
i

Даны урав­не­ния 2 ко­рень из: на­ча­ло ар­гу­мен­та: x минус 1 конец ар­гу­мен­та = ко­рень из: на­ча­ло ар­гу­мен­та: 6 минус x конец ар­гу­мен­та и x в квад­ра­те минус 9x плюс 14 = 0. Уста­но­ви­те со­от­вет­ствия:

A) Число яв­ля­ет­ся кор­нем вто­ро­го урав­не­ния, но не яв­ля­ет­ся кор­нем пер­во­го урав­не­ния

Б) Число яв­ля­ет­ся кор­нем обоих урав­не­ний

1) 2

2) 1

3) 4

4) 7


Ответ:

35
Тип 35 № 7814
i

Дана гео­мет­ри­че­ская про­грес­сия (bn), зна­ме­на­тель ко­то­рой равен 2 и  b_1 = минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби . Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) S6

Б) b6 − b3

1) −21

2) −54

3) −47,25

4) 2


Ответ:

36
Тип 36 № 6972
i

Вы­чис­ли­те  ло­га­рифм по ос­но­ва­нию 2 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та пра­вая круг­лая скоб­ка ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 5 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та конец ар­гу­мен­та .



37
Тип 37 № 7794
i

Зна­че­ние вы­ра­же­ния 5 синус в квад­ра­те дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 12 конец дроби плюс 5 ко­си­нус в квад­ра­те дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 12 конец дроби равно



38
Тип 38 № 8084
i

В ариф­ме­ти­че­ской про­грес­сии сумма пер­вых пят­на­дца­ти ее чле­нов на 8 мень­ше суммы пер­вых две­на­дца­ти чле­нов. Най­ди­те че­тыр­на­дца­тый член про­грес­сии и сумму пер­вых 27 ее чле­нов.



39
Тип 39 № 8098
i

Ре­ши­те си­сте­му ло­га­риф­ми­че­ских урав­не­ний

 си­сте­ма вы­ра­же­ний новая стро­ка де­ся­тич­ный ло­га­рифм левая круг­лая скоб­ка x минус 2y минус 6 пра­вая круг­лая скоб­ка =0, новая стро­ка \log _2 левая круг­лая скоб­ка x минус y пра­вая круг­лая скоб­ка =1. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: x, зна­ме­на­тель: y конец дроби .



40
Тип 40 № 3930
i

Объем ко­ну­са равен 27. На вы­со­те ко­ну­са лежит точка и делит её в от­но­ше­нии 2 : 1 счи­тая от вер­ши­ны. Через точку про­ве­де­но се­че­ние, ко­то­рое яв­ля­ет­ся ос­но­ва­ни­ем мень­ше­го ко­ну­са с той же вер­ши­ной. Най­ди­те объем мень­ше­го ко­ну­са.


Завершить работу, свериться с ответами, увидеть решения.