Вариант № 21720

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 7854
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: минус 7 конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 32 конец ар­гу­мен­та умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 49 конец ар­гу­мен­та минус 7 дробь: чис­ли­тель: ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 64 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: минус 2 конец ар­гу­мен­та конец дроби .



2
Тип 2 № 7859
i

Най­ди­те зна­че­ние вы­ра­же­ния 28ab плюс левая круг­лая скоб­ка 2a минус 7b пра­вая круг­лая скоб­ка в квад­ра­те при a= ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та ,b= ко­рень из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та .



3
Тип 3 № 6922
i

Най­ди­те зна­че­ние вы­ра­же­ния 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби \ctg дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби .



4
Тип 4 № 1959
i

Дан­ное вы­ра­же­ние  минус левая круг­лая скоб­ка 3,5x минус y пра­вая круг­лая скоб­ка плюс 3 левая круг­лая скоб­ка минус 2y плюс 0,5x пра­вая круг­лая скоб­ка имеет стан­дарт­ный вид



5
Тип 5 № 3735
i

Ре­ши­те урав­не­ние:  дробь: чис­ли­тель: x в квад­ра­те минус x минус 2, зна­ме­на­тель: левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те конец дроби =0.



6
Тип 6 № 2013
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 4x плюс дробь: чис­ли­тель: 9, зна­ме­на­тель: y конец дроби = 21,17 минус 3x = дробь: чис­ли­тель: 18, зна­ме­на­тель: y конец дроби . конец си­сте­мы .



7
Тип 7 № 4172
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t дробь: чис­ли­тель: x в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка плюс x в кубе плюс x минус 3, зна­ме­на­тель: x в квад­ра­те плюс 1 конец дроби dx.



8
Тип 8 № 4105
i

Пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра равна 15 Пи . Най­ди­те объем V ци­лин­дра, если из­вест­но, что ра­ди­ус его ос­но­ва­ния боль­ше вы­со­ты на 3,5. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 6 умно­жить на V, зна­ме­на­тель: Пи конец дроби .



9
Тип 9 № 2484
i

Най­ди­те ре­ше­ние си­сте­мы не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: 2, зна­ме­на­тель: x конец дроби минус дробь: чис­ли­тель: x, зна­ме­на­тель: 2 конец дроби боль­ше 0, дробь: чис­ли­тель: 5 минус 2x, зна­ме­на­тель: 3x минус 4 конец дроби боль­ше 2. конец си­сте­мы .



10
Тип 10 № 6945
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния  синус 4x= дробь: чис­ли­тель: ко­рень из 2 , зна­ме­на­тель: 2 конец дроби .



11
Тип 11 № 4196
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =3x в кубе плюс 2x минус 1, про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 2;3 пра­вая круг­лая скоб­ка .



12
Тип 12 № 3380
i

Ре­ши­те не­ра­вен­ство:  дробь: чис­ли­тель: 3x плюс 9, зна­ме­на­тель: 3 минус x конец дроби боль­ше или равно 0.



13
Тип 13 № 2404
i

Ги­по­те­ну­за пря­мо­уголь­но­го тре­уголь­ни­ка с ка­те­та­ми 6 и 12 равна



14
Тип 14 № 4131
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 0 до 3, x левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 4 минус x пра­вая круг­лая скоб­ка dx.



15
Тип 15 № 3210
i

Oтре­зок АD пер­пен­ди­ку­ля­рен плос­ко­сти (BCD). Пря­мая ВС — общее ребро плос­ко­стей (ВАС) и (ВDC). Пер­пен­ди­ку­ляр, опу­щен­ный из точки А на ребро ВС равен 2а, а пер­пен­ди­ку­ляр опу­щен­ный из точки D на ребро ВС равен а, тогда угол между плос­ко­стя­ми равен



16
Тип 16 № 6959
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те плюс 3x конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: 1 минус x конец ар­гу­мен­та = ко­рень из: на­ча­ло ар­гу­мен­та: 12 минус x конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: 1 минус x конец ар­гу­мен­та .



17
Тип 17 № 3448
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний y минус x=1, 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка y пра­вая круг­лая скоб­ка =12. конец си­сте­мы .



18
Тип 18 № 4158
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=x в квад­ра­те плюс 5,y=5, минус 4 мень­ше или равно x мень­ше или равно 2.



19
Тип 19 № 8013
i

В ромбе с пе­ри­мет­ром, рав­ным 40, одна из диа­го­на­лей равна 12. Най­ди­те вто­рую диа­го­наль.



20
Тип 20 № 3808
i

Сумма всех чисел ряда 6; 2;  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби ;  дробь: чис­ли­тель: 2, зна­ме­на­тель: 9 конец дроби ; ... равна



21
Тип 21 № 7988
i

В кубе ABCDA_1B_1C_1D_1 рёбра ко­то­ро­го равны 2, вы­чис­ли­те ска­ляр­ное про­из­ве­де­ние век­то­ров \overrightarrowBD и \overrightarrowA_1C_1.



22
Тип 22 № 3531
i

Упро­сти­те:

 дробь: чис­ли­тель: левая круг­лая скоб­ка b в сте­пе­ни левая круг­лая скоб­ка 1,2 пра­вая круг­лая скоб­ка плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка в кубе плюс левая круг­лая скоб­ка b в сте­пе­ни левая круг­лая скоб­ка 1,2 пра­вая круг­лая скоб­ка минус ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка в кубе , зна­ме­на­тель: b в сте­пе­ни левая круг­лая скоб­ка 2,4 пра­вая круг­лая скоб­ка плюс 6 конец дроби .



23
Тип 23 № 8008
i

Ре­ши­те урав­не­ние \log _1 плюс x левая круг­лая скоб­ка 2x в кубе плюс 2x в квад­ра­те минус 3x плюс 1 пра­вая круг­лая скоб­ка =3.



24
Тип 24 № 7744
i

Ре­ши­те не­ра­вен­ство \log _3 левая круг­лая скоб­ка x в квад­ра­те минус 8x пра­вая круг­лая скоб­ка боль­ше или равно 2.



25
Тип 25 № 8017
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x в кубе минус x в квад­ра­те плюс x,x_0= минус 1.



26
Тип 26 № 3970
i
Развернуть

Пло­щадь до­ро­ги равна



27
Тип 27 № 3362
i
Развернуть

Ко­ли­че­ство спо­со­бов вы­па­де­ния не­чет­но­го числа равна



28
Тип 28 № 2243
i
Развернуть

Опре­де­ли­те век­тор, рав­ный сумме век­то­ров  \overrightarrowAB_1 плюс \overrightarrowB_1E_1 плюс \overrightarrowF_1F.



29
Тип 29 № 2244
i
Развернуть

Опре­де­ли­те угол между пря­мой AD1 и плос­ко­стью ABCDEF.



30
Тип 30 № 2245
i
Развернуть

Опре­де­ли­те угол между век­то­ра­ми  \overrightarrowEB и  \overrightarrowEA.



31
Тип 31 № 7724
i

Функ­ция за­да­на урав­не­ни­ем y = ко­рень из: на­ча­ло ар­гу­мен­та: 9 минус x в квад­ра­те конец ар­гу­мен­та . Уста­но­ви­те со­от­вет­ствия:

A) Об­ласть опре­де­ле­ния функ­ции

Б) Нули функ­ции

1) {3}

2) [−3; 3]

3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 3 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

4) {−3; 3}


Ответ:

32
Тип 32 № 7830
i

Окруж­ность опи­са­на около пря­мо­уголь­но­го тре­уголь­ни­ка, ка­те­ты ко­то­ро­го равны 6 и 8. Уста­но­ви­те со­от­вет­ствие между пло­ща­дью тре­уголь­ни­ка, ра­ди­у­сом окруж­но­сти и про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их чис­ло­вые зна­че­ния.

A) Пло­щадь тре­уголь­ни­ка

Б) Ра­ди­ус опи­сан­ной окруж­но­сти

1) (40; 50)

2) (21; 27)

3) [5; 8)

4) (11;⁠15]


Ответ:

33
Тип 33 № 7762
i

Най­ди­те два на­ту­раль­ных числа x и y, x > y, если из­вест­но, что сумма чисел x и y равна 7, а про­из­ве­де­ние этих чисел равно 12.

A) Число x при­над­ле­жит про­ме­жут­ку

Б) Число y при­над­ле­жит про­ме­жут­ку

1) [4; 5]

2) (1; 3]

3) (5; 6]

4) (0; 2)


Ответ:

34
Тип 34 № 8164
i

При по­мо­щи гра­фи­ка функ­ции y = ||x плюс 1| минус 2| вы­яс­ни­те, сколь­ко ре­ше­ний имеет урав­не­ние ||x плюс 1| минус 2| = a в за­ви­си­мо­сти от зна­че­ний па­ра­мет­ра a. Уста­но­ви­те со­от­вет­ствие между зна­че­ни­я­ми па­ра­мет­ра a и ко­ли­че­ством ре­ше­ний урав­не­ния

A) a мень­ше 0

Б) 0 мень­ше a мень­ше 2

1) 3

2) 4

3) 0

4) 2


Ответ:

35
Тип 35 № 7810
i

В ариф­ме­ти­че­ской про­грес­сии (an) из­вест­но, что a_2=1 и a_4=9. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) d

Б) S20

1) 700

2) 2

3) 4

4) 350


Ответ:

36
Тип 36 № 6968
i

Зна­че­ние вы­ра­же­ния 8 ко­рень из 3 плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 конец дроби ко­рень из: на­ча­ло ар­гу­мен­та: 192 конец ар­гу­мен­та равно:



37
Тип 37 № 7789
i

Най­ди­те зна­че­ние вы­ра­же­ния  тан­генс 225 гра­ду­сов ко­си­нус 330 гра­ду­сов \ctg120 гра­ду­сов синус 240 гра­ду­сов .



38
Тип 38 № 3647
i

Из пред­ло­жен­ных ниже ва­ри­ан­тов от­ве­тов, най­ди­те общую фор­му­лу n-го члена по­сле­до­ва­тель­но­сти:

 дробь: чис­ли­тель: 1, зна­ме­на­тель: 1 умно­жить на 4 конец дроби ;  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 умно­жить на 7 конец дроби ;  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 умно­жить на 10 конец дроби ;  дробь: чис­ли­тель: 4, зна­ме­на­тель: 7 умно­жить на 13 конец дроби ;  ...



39
Тип 39 № 8094
i

Ре­ши­те си­сте­му

 си­сте­ма вы­ра­же­ний новая стро­ка 9 умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс 7 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка =457, новая стро­ка 6 умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус 14 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка = минус 890. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния 2x плюс y.



40
Тип 40 № 8047
i

В ци­лин­дре, пло­щадь ос­но­ва­ния ко­то­ро­го равна 48 (при­нять  Пи \approx3), про­ве­де­но осе­вое се­че­ние. AC  — диа­го­наль осе­во­го се­че­ния ци­лин­дра. Из ниже пе­ре­чис­лен­ных от­ве­тов най­ди­те те, ко­то­рые яв­ля­ют­ся де­ли­те­ля­ми зна­че­ния пло­ща­ди бо­ко­вой по­верх­но­сти ци­лин­дра.


Завершить работу, свериться с ответами, увидеть решения.