Вариант № 20971

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 3855
i

Вы­чис­ли­те  дробь: чис­ли­тель: 49 в сте­пе­ни левая круг­лая скоб­ка 25 пра­вая круг­лая скоб­ка умно­жить на 625 в сте­пе­ни левая круг­лая скоб­ка 15 пра­вая круг­лая скоб­ка , зна­ме­на­тель: левая круг­лая скоб­ка 5 в сте­пе­ни левая круг­лая скоб­ка 12 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка 7 в сте­пе­ни левая круг­лая скоб­ка 16 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в кубе конец дроби .



2
Тип 2 № 7869
i

Най­ди­те зна­че­ние вы­ра­же­ния a в сте­пе­ни левая круг­лая скоб­ка 12 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка a в сте­пе­ни левая круг­лая скоб­ка минус 4 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни 4   при a = минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .



3
Тип 3 № 3271
i

Най­ди­те зна­че­ние вы­ра­же­ния:  синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби минус синус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби .



4
Тип 4 № 7875
i

Раз­ло­жи­те квад­рат­ный трех­член 4x в квад­ра­те плюс 9x плюс 2 на мно­жи­те­ли.



5
Тип 5 № 2133
i

Из ни­же­пе­ре­чис­лен­ных от­ве­тов вы­бе­ри­те корни урав­не­ния:  левая круг­лая скоб­ка x в квад­ра­те минус 1 пра­вая круг­лая скоб­ка в квад­ра­те минус 49 = 0.



6
Тип 6 № 3417
i

Если пары (x1; y1) и (x2; y2) — ре­ше­ния си­сте­мы урав­не­ний

 си­сте­ма вы­ра­же­ний 2 x в квад­ра­те минус y=0, y плюс 3=5 x, конец си­сте­мы .

то най­ди­те m, где m= левая круг­лая скоб­ка y_1 минус x_1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка y_2 минус x_2 пра­вая круг­лая скоб­ка .



7
Тип 7 № 4177
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка e в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка минус e в сте­пе­ни левая круг­лая скоб­ка минус 2x пра­вая круг­лая скоб­ка плюс 2e в сте­пе­ни левая круг­лая скоб­ка 3x минус 5 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx.



8
Тип 8 № 4099
i

Пусть O и O1  — цен­тры ос­но­ва­ний ци­лин­дра, изоб­ра­жен­но­го на ри­сун­ке. Тогда об­ра­зу­ю­щей ци­лин­дра яв­ля­ет­ся от­ре­зок:



9
Тип 9 № 3909
i

Ре­ши­те си­сте­му не­ра­венств: Not match begin/end



10
Тип 10 № 6949
i

Ре­ши­те урав­не­ние  ко­си­нус левая круг­лая скоб­ка 3x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .



11
Тип 11 № 7902
i

Най­ди­те зна­че­ние про­из­вод­ной функ­ции x в кубе минус x в квад­ра­те в точке x  =  1.



12
Тип 12 № 2155
i

Какой про­ме­жу­ток яв­ля­ет­ся ре­ше­ни­ем не­ра­вен­ства:  дробь: чис­ли­тель: x минус 1, зна­ме­на­тель: 2 минус x конец дроби мень­ше или равно 0.



13
Тип 13 № 2724
i

Най­ди­те пло­щадь за­штри­хо­ван­ной фи­гу­ры (см. рис).



14
Тип 14 № 3389
i

Вы­чис­ли­те ин­те­грал:  при­над­ле­жит t_0 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка левая круг­лая скоб­ка синус 3 x ко­си­нус 2 x минус ко­си­нус 3 x синус 2 x пра­вая круг­лая скоб­ка d x.



15
Тип 15 № 3325
i

Ос­но­ва­ни­ем пра­виль­ной тре­уголь­ной пи­ра­ми­ды яв­ля­ет­ся рав­но­сто­рон­ний тре­уголь­ник со сто­ро­ной 6 см. Вы­со­та пи­ра­ми­ды равна 9 см. Най­ди­те объем пи­ра­ми­ды.



16
Тип 16 № 2098
i

Ука­жи­те корни урав­не­ния:  левая круг­лая скоб­ка x в квад­ра­те минус 4 пра­вая круг­лая скоб­ка умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: x минус 1 конец ар­гу­мен­та = 0.



17
Тип 17 № 3451
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 3 в сте­пе­ни левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка мень­ше дробь: чис­ли­тель: 3, зна­ме­на­тель: 9 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби пра­вая круг­лая скоб­ка конец дроби , 6 в сте­пе­ни левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка боль­ше 2 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка . конец си­сте­мы .



18
Тип 18 № 4152
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y= минус 2x в квад­ра­те минус 3x плюс 7,y= минус 3x плюс 7, минус 2 мень­ше или равно x мень­ше или равно 0.



19
Тип 19 № 3524
i

Внеш­ний угол пра­виль­но­го два­дца­ти­уголь­ни­ка равен?



20
Тип 20 № 3456
i

Опре­де­ли­те, какая из пред­ло­жен­ных по­сле­до­ва­тель­но­стей не яв­ля­ет­ся гео­мет­ри­че­ской про­грес­си­ей.



21
Тип 21 № 7959
i

Най­ди­те ко­ор­ди­на­ты век­то­ра \veca, если \veca=4\vecp плюс \veci,\vecp= левая круг­лая скоб­ка 5; минус 2 пра­вая круг­лая скоб­ка ,\veci= левая круг­лая скоб­ка минус 7;3 пра­вая круг­лая скоб­ка .



22
Тип 22 № 2132
i

Упро­сти­те вы­ра­же­ние:  ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: a в сте­пе­ни левая круг­лая скоб­ка 10 конец ар­гу­мен­та , зна­ме­на­тель: 16b в сте­пе­ни 6 конец дроби пра­вая круг­лая скоб­ка , a мень­ше 0, b мень­ше 0.



23
Тип 23 № 7920
i

Ре­ши­те урав­не­ние: 9 в сте­пе­ни левая круг­лая скоб­ка \log пра­вая круг­лая скоб­ка _9 левая круг­лая скоб­ка 4x минус 4 пра­вая круг­лая скоб­ка =x в квад­ра­те минус 1.



24
Тип 24 № 7743
i

Ре­ши­те не­ра­вен­ство \log _ дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби левая круг­лая скоб­ка x в квад­ра­те плюс 4x плюс 12 пра­вая круг­лая скоб­ка боль­ше минус 2.



25
Тип 25 № 8029
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­си­нус x,x_0= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби .



26
Тип 26 № 2066
i
Развернуть

Oпре­де­ли­те, сколь­ки­ми спо­со­ба­ми пара смо­жет раз­ме­стить­ся в одном купе СВ.



27
Тип 27 № 4006
i
Развернуть

Hай­ди­те пло­щадь по­верх­но­сти од­но­го «ребра»



28
Тип 28 № 4007
i
Развернуть

Под каким углом синяя грань Пи­ра­мид­ки на­кло­не­на к жел­той грани?



29
Тип 29 № 4008
i
Развернуть

Kакой вы­со­ты долж­на быть упа­ков­ка для Пи­ра­мид­ки?



30
Тип 30 № 4009
i
Развернуть

Из­го­то­ви­тель вы­брал упа­ков­ку для Пи­ра­мид­ки в виде сферы. Каким дол­жен быть диа­метр упа­ков­ки?



31
Тип 31 № 7708
i

Квад­ра­тич­ная функ­ция за­да­на урав­не­ни­ем y = x в квад­ра­те минус 1. Уста­но­ви­те со­от­вет­ствие между ну­ля­ми функ­ции и ко­ор­ди­на­та­ми вер­ши­ны па­ра­бо­лы.

A)  Нули функ­ции

Б)  Ко­ор­ди­на­ты вер­ши­ны па­ра­бо­лы

1)  (1; 0)

2)  {−1; 1}

3)  {−2; 2}

4)  (0; −1)


Ответ:

32
Тип 32 № 7840
i

Куб, объем ко­то­ро­го равен 8, впи­сан в шар. Уста­но­ви­те со­от­вет­ствие между ра­ди­у­сом шара, пло­ща­дью его по­верх­но­сти и чис­ло­вы­ми про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их зна­че­ния.

A) Ра­ди­ус шара

Б) Пло­щадь по­верх­но­сти шара

1) (0; 1)

2) [3; 4]

3) (1; 2]

4) (33; 40)


Ответ:

33
Тип 33 № 7731
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  левая круг­лая скоб­ка 2x минус 3 пра­вая круг­лая скоб­ка в кубе . Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x2, сум­мой ко­эф­фи­ци­ен­тов мно­го­чле­на и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x2

Б) Сумма ко­эф­фи­ци­ен­тов мно­го­чле­на

1) [−1; 0]

2) (−55; −36)

3) [−39; −30]

4) [5; 14)


Ответ:

34

Даны урав­не­ния  ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x в квад­ра­те плюс 2x плюс 1 пра­вая круг­лая скоб­ка = 0 и 2 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те минус 4x минус 8 пра­вая круг­лая скоб­ка = 16. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) 1, 2, 4

2) 0, 7, 1

3) 0, 6, −2

4) 6, 5, −2


Ответ:

35
Тип 35 № 7820
i

Гео­мет­ри­че­ская про­грес­сия за­да­ет­ся фор­му­лой  b_n =164 умно­жить на левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни n . Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) b1

Б) S4

1) 41

2) 71

3) 82

4) 153,75

2

Ответ:

36
Тип 36 № 6971
i

Вы­чис­ли­те  ло­га­рифм по ос­но­ва­нию дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби ко­рень из: на­ча­ло ар­гу­мен­та: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та конец ар­гу­мен­та 8 пра­вая круг­лая скоб­ка .



37
Тип 37 № 7800
i

Най­ди­те зна­че­ние вы­ра­же­ния 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби тан­генс дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби .



38
Тип 38 № 3870
i

Сумма цифр че­ты­рех­знач­но­го числа равна 16 и все цифры числа об­ра­зу­ют ариф­ме­ти­че­скую про­грес­сию. При­чем, цифра еди­ниц на 4 боль­ше цифры сотен. Вы­бе­ри­те вер­ные утвер­жде­ния.



39
Тип 39 № 8109
i

Ре­ши­те си­сте­му, со­дер­жа­щую од­но­род­ное урав­не­ние

 си­сте­ма вы­ра­же­ний новая стро­ка 3x плюс 5y=2, новая стро­ка 3x в квад­ра­те плюс 10xy минус 25y в квад­ра­те =0. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния x_1y_1 плюс x_2y_2.



40
Тип 40 № 3555
i

Из ко­ну­са вы­ре­за­ли шар наи­боль­ше­го объёма. Най­ди­те от­но­ше­ние объёма сре­зан­ной части ко­ну­са к объёму шара, если осе­вое се­че­ние ко­ну­са — рав­но­сто­рон­ний тре­уголь­ник.


Завершить работу, свериться с ответами, увидеть решения.