Вариант № 20378

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 7854
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: минус 7 конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 32 конец ар­гу­мен­та умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 49 конец ар­гу­мен­та минус 7 дробь: чис­ли­тель: ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 64 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: минус 2 конец ар­гу­мен­та конец дроби .



2

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 16x минус 25y, зна­ме­на­тель: 4 ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та минус 5 ко­рень из: на­ча­ло ар­гу­мен­та: y конец ар­гу­мен­та конец дроби минус ко­рень из: на­ча­ло ар­гу­мен­та: y конец ар­гу­мен­та , если  ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: y конец ар­гу­мен­та =3.



3
Тип 3 № 6933
i

Най­ди­те зна­че­ние вы­ра­же­ния 24 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ко­си­нус левая круг­лая скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка синус левая круг­лая скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка .



4
Тип 4 № 3247
i

Раз­ло­жи­те квад­рат­ный трех­член 2x в квад­ра­те плюс 7x минус 15 на мно­жи­те­ли.



5
Тип 5 № 2133
i

Из ни­же­пе­ре­чис­лен­ных от­ве­тов вы­бе­ри­те корни урав­не­ния:  левая круг­лая скоб­ка x в квад­ра­те минус 1 пра­вая круг­лая скоб­ка в квад­ра­те минус 49 = 0.



6
Тип 6 № 3811
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 3x минус 5y =23,2x плюс 3y=9. конец си­сте­мы .



7
Тип 7 № 8184
i

Най­ди­те  при­над­ле­жит t левая круг­лая скоб­ка e в сте­пе­ни x плюс 5 в сте­пе­ни x плюс 3 пра­вая круг­лая скоб­ка dx.



8
Тип 8 № 3290
i

Опре­де­ли­те длину диа­го­на­ли осе­во­го се­че­ния ци­лин­дра с ра­ди­у­сом 5 см и вы­со­той 24 см.



9
Тип 9 № 3909
i

Ре­ши­те си­сте­му не­ра­венств: Not match begin/end



10
Тип 10 № 1945
i

Ре­ши­те урав­не­ние  синус в квад­ра­те x минус 17 синус x плюс 16 = 0 и най­ди­те его корни на x при­над­ле­жит левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .



11
Тип 11 № 7902
i

Най­ди­те зна­че­ние про­из­вод­ной функ­ции x в кубе минус x в квад­ра­те в точке x  =  1.



12
Тип 12 № 1960
i

Bыбе­ри­те урав­не­ние, ко­то­рое яв­ля­ет­ся квад­рат­ным урав­не­ни­ем с одной пе­ре­мен­ной



13
Тип 13 № 3867
i

Сто­ро­ны тре­уголь­ни­ка равны 4 см, 6 см и 8 см. Най­ди­те сто­ро­ны по­доб­но­го ему тре­уголь­ни­ка, если ко­эф­фи­ци­ент по­до­бия равен 2. В от­ве­те ука­жи­те сумму длин сто­рон.



14
Тип 14 № 2124
i

Bычис­ли­те ин­те­грал:  при­над­ле­жит t_ минус 5 в сте­пе­ни левая круг­лая скоб­ка 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те d x.



15
Тип 15 № 7919
i

Сумма длин всех ребер па­рал­ле­ле­пи­пе­да ABCDA1B1C1D1 равна 180 см. Опре­де­ли­те длину ребер AB, BC и AA1, если AB:BC:AA_1=2:3:4.



16
Тип 16 № 6962
i

Най­ди­те про­из­ве­де­ние кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния x в квад­ра­те минус 5x минус 3=4 ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 5x плюс 9. конец ар­гу­мен­та



17
Тип 17 № 3752
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний ко­рень из: на­ча­ло ар­гу­мен­та: 4x минус 7 конец ар­гу­мен­та мень­ше x, ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 5 конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: 5 минус x конец ар­гу­мен­та боль­ше 4, конец си­сте­мы . и ука­жи­те ко­ли­че­ство целых ре­ше­ний си­сте­мы не­ра­венств.



18
Тип 18 № 4161
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y= минус x в квад­ра­те ,y=x плюс 2, минус 3 мень­ше или равно x мень­ше или равно 2.



19
Тип 19 № 7914
i

Пра­виль­ный n-уголь­ник впи­сан в окруж­ность. Её ра­ди­ус со­став­ля­ет с одной из сто­рон n-уголь­ни­ка угол 54°. Най­ди­те n.



20
Тип 20 № 8190
i

Ариф­ме­ти­че­ская про­грес­сия 5, 8, 11... и гео­мет­ри­че­ская про­грес­сия 4, 8, 16... имеют по 50 чле­нов. Сколь­ко оди­на­ко­вых чле­нов в обеих про­грес­си­ях?



21
Тип 21 № 7939
i

На ри­сун­ке изоб­ра­жен рав­но­сто­рон­ний тре­уголь­ник ABC. Най­ди­те длины век­то­ров \overrightarrowAB минус \overrightarrowAC и \overrightarrowAB плюс \overrightarrowAC, если сто­ро­ны тре­уголь­ни­ка равны 9 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .



22
Тип 22 № 7887
i

Упро­сти­те вы­ра­же­ние  ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те конец ар­гу­мен­та минус 3, при x боль­ше минус 1.



23
Тип 23 № 2481
i

Ре­ши­те урав­не­ние:  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка ко­рень из 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка тан­генс x плюс 4 пра­вая круг­лая скоб­ка = 2.



24
Тип 24 № 7745
i

Ре­ши­те про­стей­шее три­го­но­мет­ри­че­ское не­ра­вен­ство  синус x боль­ше дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .



25
Тип 25 № 8012
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x в квад­ра­те плюс x плюс 1,x_0=5.



26
Тип 26 № 3466
i
Развернуть

Сколь­ки­ми спо­со­ба­ми Ма­ди­на может вы­брать в ма­га­зи­не ком­плект «чашка+блюд­це+ложка»?



27
Тип 27 № 4006
i
Развернуть

Hай­ди­те пло­щадь по­верх­но­сти од­но­го «ребра»



28
Тип 28 № 2068
i
Развернуть

Oпре­де­ли­те, сколь­ки­ми спо­со­ба­ми пара смо­жет раз­ме­стить­ся в ва­го­не типа Плац­карт B.



29
Тип 29 № 3469
i
Развернуть

Сколь­ки­ми спо­со­ба­ми Ма­ди­на может ку­пить в ма­га­зи­не ком­плект «2 чашки+блю­ю­це+3 ложки»?



30
Тип 30 № 2070
i
Развернуть

Oпре­де­ли­те, сколь­ки­ми спо­со­ба­ми пара смо­жет раз­ме­стить­ся в общем ва­го­не.



31
Тип 31 № 7718
i

Функ­ция за­да­на урав­не­ни­ем y = минус 4 в сте­пе­ни левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка плюс 4. Уста­но­ви­те со­от­вет­ствия:

A) Нуль функ­ции

Б) Мно­же­ство зна­че­ний функ­ции

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 4 пра­вая круг­лая скоб­ка

2) 2

3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 0 пра­вая круг­лая скоб­ка

4) 1


Ответ:

32
Тип 32 № 7833
i

Шар впи­сан в конус, вы­со­та ко­то­ро­го равна 40, а объем  — 1080π. Уста­но­ви­те со­от­вет­ствие между ра­ди­у­сом ос­но­ва­ния ко­ну­са, ра­ди­у­сом шара и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Ра­ди­ус ос­но­ва­ния ко­ну­са

Б) Ра­ди­ус шара

1) 9

2)  дробь: чис­ли­тель: 36, зна­ме­на­тель: 5 конец дроби

3) 12

4)  дробь: чис­ли­тель: 72, зна­ме­на­тель: 5 конец дроби


Ответ:

33
Тип 33 № 7765
i

Най­ди­те два на­ту­раль­ных числа x и y, x > y, если из­вест­но, что сумма чисел x и y равна 7, а про­из­ве­де­ние раз­но­сти этих чисел на раз­ность квад­ра­тов этих чисел равно 175.

A) Число x при­над­ле­жит про­ме­жут­ку

Б) Число y при­над­ле­жит про­ме­жут­ку

1) [3; 4]

2) (5; 7)

3) [1; 2)

4) (2; 3)


Ответ:

34
Тип 34 № 7790
i

Даны урав­не­ния  дробь: чис­ли­тель: x минус 4, зна­ме­на­тель: x минус 6 конец дроби = 2 и x в квад­ра­те минус x минус 6=0. Уста­но­ви­те со­от­вет­ствия:

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из урав­не­ний

Б) Ни одно из чисел не яв­ля­ет­ся кор­нем урав­не­ний

1) −2, 3, 8

2) −2, 8, 1

3) −3, 5, 1

4) 3, −1, 8


Ответ:

35
Тип 35 № 7813
i

Гео­мет­ри­че­ская про­грес­сия  левая круг­лая скоб­ка b_n пра­вая круг­лая скоб­ка за­да­на фор­му­лой n-го члена  b_n = 2 умно­жить на левая круг­лая скоб­ка минус 3 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка n минус 1 пра­вая круг­лая скоб­ка . Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) b4

Б) S3

1) 14

2) −54

3) 162

4) 3


Ответ:

36
Тип 36 № 6971
i

Вы­чис­ли­те  ло­га­рифм по ос­но­ва­нию дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби ко­рень из: на­ча­ло ар­гу­мен­та: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та конец ар­гу­мен­та 8 пра­вая круг­лая скоб­ка .



37
Тип 37 № 7793
i

Най­ди­те зна­че­ние вы­ра­же­ния  синус дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 4 конец дроби ко­си­нус дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 6 конец дроби тан­генс дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 3 конец дроби \ctg дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби .



38
Тип 38 № 8082
i

Най­ди­те зна­ме­на­тель гео­мет­ри­че­ской про­грес­сии, если сумма ее тре­тье­го и чет­вер­то­го чле­нов вдвое боль­ше суммы чет­вер­то­го и пя­то­го чле­нов.



39
Тип 39 № 8097
i

Ре­ши­те си­сте­му по­ка­за­тель­но-сте­пен­ных урав­не­ний

 си­сте­ма вы­ра­же­ний новая стро­ка ко­рень \tfracx4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 2x минус y конец ар­гу­мен­та =2, новая стро­ка левая круг­лая скоб­ка 2x минус y пра­вая круг­лая скоб­ка умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка \tfracx пра­вая круг­лая скоб­ка 4=1000. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: x, зна­ме­на­тель: y конец дроби .



40
Тип 40 № 3929
i

Точка O — центр шара, точка O1 — центр круга — се­че­ния шара. Най­ди­те объем шара, если O1N = 6 и угол O1NO равен 30°.


Завершить работу, свериться с ответами, увидеть решения.