Вариант № 20367

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 3208
i

За­пи­ши­те в виде обык­но­вен­ной дроби бес­ко­неч­ную пе­ри­о­ди­че­скую де­ся­тич­ную дробь 21,00(12).



2
Тип 2 № 7858
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка 8b минус 8 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 8b плюс 8 пра­вая круг­лая скоб­ка минус 8b левая круг­лая скоб­ка 8b плюс 8 пра­вая круг­лая скоб­ка при b=2,6.



3
Тип 3 № 6928
i

Най­ди­те зна­че­ние вы­ра­же­ния 5 синус дробь: чис­ли­тель: 11 Пи , зна­ме­на­тель: 12 конец дроби умно­жить на ко­си­нус дробь: чис­ли­тель: 11 Пи , зна­ме­на­тель: 12 конец дроби .



4
Тип 4 № 8174
i

Опре­де­ли­те сте­пень мно­го­чле­на: 3x в сте­пе­ни 5 y в кубе минус 6y в квад­ра­те плюс 12xy в кубе плюс 4.



5
Тип 5 № 3413
i

Най­ди­те от­ри­ца­тель­ный ко­рень урав­не­ния 8|x| минус 5|x| минус 17=0.



6
Тип 6 № 8176
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний x минус 5y = минус 21, x плюс y = минус 9. конец си­сте­мы .



7
Тип 7 № 8137
i

Най­ди­те ин­те­грал:  при­над­ле­жит t дробь: чис­ли­тель: 1, зна­ме­на­тель: x плюс 2 конец дроби dx .



8
Тип 8 № 4101
i

Пло­щадь бо­ко­вой по­верх­но­сти ци­лин­дра равна 28 Пи , и его объем равен 28 Пи . Най­ди­те вы­со­ту ци­лин­дра.



9
Тип 9 № 2471
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: x, зна­ме­на­тель: 6 конец дроби минус дробь: чис­ли­тель: x, зна­ме­на­тель: 3 конец дроби боль­ше 2,4x плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби мень­ше x. конец си­сте­мы .



10
Тип 10 № 3211
i

Из пред­ло­жен­ных ниже ва­ри­ан­тов най­ди­те серию, со­дер­жа­щую все ре­ше­ния урав­не­ния  синус 3 x плюс ко­си­нус 3 x=0.



11
Тип 11 № 4204
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =3 левая круг­лая скоб­ка 2x плюс 1 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та , про­хо­дя­щую через точку  левая круг­лая скоб­ка 10;15 пра­вая круг­лая скоб­ка .



12
Тип 12 № 1966
i

Ре­ши­те не­ра­вен­ство:  левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 5x плюс 10 пра­вая круг­лая скоб­ка боль­ше или равно 0



13
Тип 13 № 2622
i

Синус боль­ше­го угла тре­уголь­ни­ка со сто­ро­на­ми 10 см, 17 см, 21 см равен



14
Тип 14 № 2718
i

Вы­чис­ли­те ин­те­грал:  ин­те­грал пре­де­лы: от минус 5 до 1, левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те dx .



15
Тип 15 № 3430
i

B еди­нич­ном кубе най­ди­те рас­сто­я­ние от вер­ши­ны В до плос­ко­сти (АСВ1).



16
Тип 16 № 8003
i

Ре­ши­те урав­не­ние 4 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка =12.



17
Тип 17 № 3451
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 3 в сте­пе­ни левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка мень­ше дробь: чис­ли­тель: 3, зна­ме­на­тель: 9 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби пра­вая круг­лая скоб­ка конец дроби , 6 в сте­пе­ни левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка боль­ше 2 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка . конец си­сте­мы .



18
Тип 18 № 4156
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y=3x в квад­ра­те минус 3x плюс 3,y=9x минус 2,x = 0,5,x = 1.



19
Тип 19 № 7912
i

Вы­со­та BH ромба ABCD делит его сто­ро­ну AD на от­рез­ки AH = 44 и HD=11. Най­ди­те пло­щадь ромба.



20
Тип 20 № 3773
i

По­сле­до­ва­тель­ность (bn) гео­мет­ри­че­ская про­грес­сия. Най­ди­те: b4, если b_1=128 и q= минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .



21
Тип 21 № 7925
i

Даны век­то­ры \veca левая фи­гур­ная скоб­ка 4; 3 пра­вая фи­гур­ная скоб­ка , \vecb левая фи­гур­ная скоб­ка 8; минус 10 пра­вая фи­гур­ная скоб­ка , \vecc левая фи­гур­ная скоб­ка минус 4; дробь: чис­ли­тель: 23, зна­ме­на­тель: 3 конец дроби пра­вая фи­гур­ная скоб­ка . Раз­ло­жи­те век­тор \vecc по век­то­рам \veca и \vecb.



22
Тип 22 № 3769
i

Зна­че­ние суммы  дробь: чис­ли­тель: b плюс c, зна­ме­на­тель: 3a конец дроби плюс дробь: чис­ли­тель: b минус 2c, зна­ме­на­тель: a конец дроби равно



23
Тип 23 № 8146
i

Ре­ши­те урав­не­ние:  ло­га­рифм по ос­но­ва­нию 3 x плюс ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка = 1.



24
Тип 24 № 7751
i

Ре­ши­те не­ра­вен­ство |x плюс 4| умно­жить на левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка мень­ше 0.



25
Тип 25 № 8063
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =2 синус x минус \operatorname\ctgx,x_0= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби .



26
Тип 26 № 2416
i
Развернуть

Ка­ко­ва пло­щадь пола дач­но­го до­ми­ка?



27
Тип 27 № 3327
i
Развернуть

Опре­де­ли­те длину ос­но­ва­ния, зная что боль­шой ра­ди­ус «диска» равен 74 метра Ответ округ­ли­те до целых.



28
Тип 28 № 3328
i
Развернуть

Опре­де­ли­те общую пло­щадь пола 17-го этажа, зная что он лежит в плос­ко­сти, про­хо­дя­щий через центр.



29
Тип 29 № 3329
i
Развернуть

В бу­ду­щем ар­хи­тек­то­ры пла­ни­ру­ют ли­це­вую и зад­нюю сто­ро­ны зда­ния, то есть 2 «диска» пол­но­стью за­мо­стить стек­лом. Най­ди­те, сколь­ко квад­рат­ных мет­ров стек­ла для этого по­на­до­бит­ся. При­ми­те  Пи \approx 3,1416, ответ округ­ли­те до целых.

(Для ре­ше­ния за­да­чи не­об­хо­ди­мо ис­поль­зо­вать каль­ку­ля­тор.)



30
Тип 30 № 3330
i
Развернуть

Опре­де­ли­те объем круг­ло­го от­вер­стия рас­по­ло­жен­но­го в цен­тре зда­ния. Ответ округ­ли­те до целых.



31
Тип 31 № 7723
i

Функ­ция за­да­на урав­не­ни­ем y = ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 4 конец ар­гу­мен­та . Уста­но­ви­те со­от­вет­ствия:

A) Об­ласть опре­де­ле­ния функ­ции

Б) Нули функ­ции

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 2 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

2) {−2; 2}

3) {2}

4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 2 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка


Ответ:

32
Тип 32 № 7829
i

Пло­щадь пра­виль­но­го тре­уголь­ни­ка равна 12 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та . Уста­но­ви­те со­от­вет­ствие между дли­ной сто­ро­ны тре­уголь­ни­ка, ра­ди­у­сом окруж­но­сти, опи­сан­ной около него и их чис­ло­вы­ми зна­че­ни­я­ми.

A) Длина сто­ро­ны тре­уголь­ни­ка

Б) Ра­ди­ус окруж­но­сти, опи­сан­ной около тре­уголь­ни­ка

1) 4 ко­рень из 3

2) 2 ко­рень из 3

3) 4

4) 3


Ответ:

33
Тип 33 № 7761
i

Най­ди­те два на­ту­раль­ных числа a и b, если из­вест­но, что от­но­ше­ние чисел a и b равно 2, а сумма чисел a и 2b равна 4.

A) Число a при­над­ле­жит про­ме­жут­ку

Б) Число b при­над­ле­жит про­ме­жут­ку

1) (2; 4)

2) (0; 1]

3) (3; 6]

4) [2; 4)


Ответ:

34
Тип 34 № 8041
i

Даны урав­не­ния x в квад­ра­те минус 8x= минус 7 и 4 левая круг­лая скоб­ка 2,5 плюс 2x пра­вая круг­лая скоб­ка =2. По пред­став­лен­ным дан­ным уста­но­ви­те со­от­вет­ствие.

A) Каж­дое число яв­ля­ет­ся кор­нем хотя бы од­но­го из дан­ных урав­не­ний

Б) Ни одно число не яв­ля­ет­ся кор­нем дан­ных урав­не­ний

1) 1, 7, −1

2) 1, 7

3) 0, −7, 2

4) 0, 1, −1


Ответ:

35
Тип 35 № 7809
i

Сумма n пер­вых чле­нов ариф­ме­ти­че­ской про­грес­сии (an) опре­де­ля­ет­ся фор­му­лой: S_n= дробь: чис­ли­тель: 5,2 минус 0,8 n, зна­ме­на­тель: 2 конец дроби умно­жить на n. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем.

A) S6

Б) a4

1) −0,2

2) 11,2

3) 0

4) 1,2


Ответ:

36
Тип 36 № 3921
i

Если

 S = дробь: чис­ли­тель: 0,536 в квад­ра­те минус 0,464 в квад­ра­те , зна­ме­на­тель: 3,6 в квад­ра­те минус 7,2 умно­жить на 2,4 плюс 2,4 в квад­ра­те конец дроби

то верны сле­ду­ю­щие утвер­жде­ния.



37
Тип 37 № 7786
i

Най­ди­те зна­че­ние вы­ра­же­ния  синус 81 гра­ду­сов синус 51 гра­ду­сов плюс синус 9 гра­ду­сов синус 39 гра­ду­сов .



38
Тип 38 № 3234
i

Знаем, что (an) — ариф­ме­ти­че­ская про­грес­сия, седь­мой член, ко­то­рой равен 5, тогда сумма три­на­дца­ти пер­вых чле­нов этой про­грес­сии равна



39
Тип 39 № 8093
i

Ре­ши­те си­сте­му по­ка­за­тель­ных урав­не­ний

 си­сте­ма вы­ра­же­ний новая стро­ка 8 в сте­пе­ни левая круг­лая скоб­ка 2x плюс 1 пра­вая круг­лая скоб­ка =32 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка 4y минус 1 пра­вая круг­лая скоб­ка , новая стро­ка 5 умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка x минус y пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: 25 конец ар­гу­мен­та в сте­пе­ни левая круг­лая скоб­ка 2y плюс 1 пра­вая круг­лая скоб­ка . конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния 4x плюс 2y.



40
Тип 40 № 3555
i

Из ко­ну­са вы­ре­за­ли шар наи­боль­ше­го объёма. Най­ди­те от­но­ше­ние объёма сре­зан­ной части ко­ну­са к объёму шара, если осе­вое се­че­ние ко­ну­са — рав­но­сто­рон­ний тре­уголь­ник.


Завершить работу, свериться с ответами, увидеть решения.